Dissipation range of the energy spectrum in high Reynolds number turbulence

被引:45
作者
Buaria, Dhawal [1 ,2 ]
Sreenivasan, Katepalli R. [1 ,3 ,4 ]
机构
[1] NYU, Tandon Sch Engn, New York, NY 11201 USA
[2] Max Planck Inst Dynam & Self Org, D-37077 Gottingen, Germany
[3] NYU, Dept Phys, New York, NY 10012 USA
[4] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
ISOTROPIC TURBULENCE; INTERMITTENCY; BOTTLENECK; FLUID;
D O I
10.1103/PhysRevFluids.5.092601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We seek to understand the kinetic energy spectrum in the dissipation range of fully developed turbulence. The data are obtained by direct numerical simulations (DNS) of forced Navier-Stokes equations in a periodic domain, for Taylor-scale Reynolds numbers up to R-lambda = 650, with excellent small-scale resolution of k(max) eta approximate to 6, and additionally at R-lambda = 1300 with k(max) eta approximate to 3, where k(max) is the maximum resolved wave number and eta is the Kolmogorov length scale. We find that for a limited range of wave numbers k past the bottleneck, in the range 0.15 less than or similar to k eta <= 0.5, the spectra for all R-lambda display a universal stretched exponential behavior of the form exp(-k(2/3)), in rough accordance with recent theoretical predictions. In contrast, the stretched exponential fit does not possess a unique exponent in the near dissipation range 1 <= k eta <= 4, but one that persistently decreases with increasing R-lambda. This region serves as the intermediate dissipation range between the exp(-k(2/3)) region and the far dissipation range k eta >> 1 where analytical arguments as well as DNS data with superfine resolution [S. Khurshid et al., Phys. Rev. Fluids 3, 082601 (2018)] suggest a simple exp(-k eta) dependence. We briefly discuss our results in connection to the multifractal model.
引用
收藏
页数:8
相关论文
共 38 条
[11]   Experimental test of the crossover between the inertial and the dissipative range in a turbulent swirling flow [J].
Debue, Paul ;
Kuzzay, Denis ;
Saw, Ewe-Wei ;
Daviaud, Francois ;
Dubrulle, Berengere ;
Canet, Leonie ;
Rossetto, Vincent ;
Wschebor, Nicolas .
PHYSICAL REVIEW FLUIDS, 2018, 3 (02)
[12]   The bottleneck effect and the Kolmogorov constant in isotropic turbulence [J].
Donzis, D. A. ;
Sreenivasan, K. R. .
JOURNAL OF FLUID MECHANICS, 2010, 657 :171-188
[13]   EMPIRICAL AND STOKES EIGENFUNCTIONS AND THE FAR-DISSIPATIVE TURBULENT SPECTRUM [J].
FOIAS, C ;
MANLEY, O ;
SIROVICH, L .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (03) :464-467
[14]   INTERMITTENCY IN NON-LINEAR DYNAMICS AND SINGULARITIES AT COMPLEX TIMES [J].
FRISCH, U ;
MORF, R .
PHYSICAL REVIEW A, 1981, 23 (05) :2673-2705
[15]   A PREDICTION OF THE MULTIFRACTAL MODEL - THE INTERMEDIATE DISSIPATION RANGE [J].
FRISCH, U ;
VERGASSOLA, M .
EUROPHYSICS LETTERS, 1991, 14 (05) :439-444
[16]  
Frisch U., 1995, Turbulence: The Legacy of A. N. Kolmogorov
[17]   Hyperviscosity, galerkin truncation, and bottlenecks in turbulence [J].
Frisch, Uriel ;
Kurien, Susan ;
Pandit, Rahul ;
Pauls, Walter ;
Ray, Samriddhi Sankar ;
Wirth, Achim ;
Zhu, Jian-Zhou .
PHYSICAL REVIEW LETTERS, 2008, 101 (14)
[19]   Analysis of the dissipative range of the energy spectrum in grid turbulence and in direct numerical simulations [J].
Gorbunova, Anastasiia ;
Balarac, Guillaume ;
Bourgoin, Mickael ;
Canet, Leonie ;
Mordant, Nicolas ;
Rossetto, Vincent .
PHYSICAL REVIEW FLUIDS, 2020, 5 (04)
[20]   Energy spectrum in the near dissipation range of high resolution direct numerical simulation of turbulence [J].
Ishihara, T ;
Kaneda, Y ;
Yokokawa, M ;
Itakura, K ;
Uno, A .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (05) :1464-1471