Dissipation range of the energy spectrum in high Reynolds number turbulence

被引:45
作者
Buaria, Dhawal [1 ,2 ]
Sreenivasan, Katepalli R. [1 ,3 ,4 ]
机构
[1] NYU, Tandon Sch Engn, New York, NY 11201 USA
[2] Max Planck Inst Dynam & Self Org, D-37077 Gottingen, Germany
[3] NYU, Dept Phys, New York, NY 10012 USA
[4] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
ISOTROPIC TURBULENCE; INTERMITTENCY; BOTTLENECK; FLUID;
D O I
10.1103/PhysRevFluids.5.092601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We seek to understand the kinetic energy spectrum in the dissipation range of fully developed turbulence. The data are obtained by direct numerical simulations (DNS) of forced Navier-Stokes equations in a periodic domain, for Taylor-scale Reynolds numbers up to R-lambda = 650, with excellent small-scale resolution of k(max) eta approximate to 6, and additionally at R-lambda = 1300 with k(max) eta approximate to 3, where k(max) is the maximum resolved wave number and eta is the Kolmogorov length scale. We find that for a limited range of wave numbers k past the bottleneck, in the range 0.15 less than or similar to k eta <= 0.5, the spectra for all R-lambda display a universal stretched exponential behavior of the form exp(-k(2/3)), in rough accordance with recent theoretical predictions. In contrast, the stretched exponential fit does not possess a unique exponent in the near dissipation range 1 <= k eta <= 4, but one that persistently decreases with increasing R-lambda. This region serves as the intermediate dissipation range between the exp(-k(2/3)) region and the far dissipation range k eta >> 1 where analytical arguments as well as DNS data with superfine resolution [S. Khurshid et al., Phys. Rev. Fluids 3, 082601 (2018)] suggest a simple exp(-k eta) dependence. We briefly discuss our results in connection to the multifractal model.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Universal intermittent properties of particle trajectories in highly turbulent flows [J].
Arneodo, A. ;
Benzi, R. ;
Berg, J. ;
Biferale, L. ;
Bodenschatz, E. ;
Busse, A. ;
Calzavarini, E. ;
Castaing, B. ;
Cencini, M. ;
Chevillard, L. ;
Fisher, R. T. ;
Grauer, R. ;
Homann, H. ;
Lamb, D. ;
Lanotte, A. S. ;
Leveque, E. ;
Luethi, B. ;
Mann, J. ;
Mordant, N. ;
Mueller, W. -C. ;
Ott, S. ;
Ouellette, N. T. ;
Pinton, J. -F. ;
Pope, S. B. ;
Roux, S. G. ;
Toschi, F. ;
Xu, H. ;
Yeung, P. K. .
PHYSICAL REVIEW LETTERS, 2008, 100 (25)
[2]  
Bershadskii A., 2015, ARXIV151208837
[3]   Reynolds number effect on the velocity increment skewness in isotropic turbulence [J].
Bos, Wouter J. T. ;
Chevillard, Laurent ;
Scott, Julian F. ;
Rubinstein, Robert .
PHYSICS OF FLUIDS, 2012, 24 (01)
[4]   Characteristics of backward and forward two-particle relative dispersion in turbulence at different Reynolds numbers [J].
Buaria, D. ;
Sawford, Brian L. ;
Yeung, P. K. .
PHYSICS OF FLUIDS, 2015, 27 (10)
[5]  
Buaria D., 2020, ARXIV200908370
[6]   Vortex stretching and enstrophy production in high Reynolds number turbulence [J].
Buaria, Dhawal ;
Bodenschatz, Eberhard ;
Pumir, Alain .
PHYSICAL REVIEW FLUIDS, 2020, 5 (10)
[7]   Extreme velocity gradients in turbulent flows [J].
Buaria, Dhawal ;
Pumir, Alain ;
Bodenschatz, Eberhard ;
Yeung, P. K. .
NEW JOURNAL OF PHYSICS, 2019, 21
[8]   Spatiotemporal velocity-velocity correlation function in fully developed turbulence [J].
Canet, Leonie ;
Rossetto, Vincent ;
Wschebor, Nicolas ;
Balarac, Guillaume .
PHYSICAL REVIEW E, 2017, 95 (02)
[9]   FAR-DISSIPATION RANGE OF TURBULENCE [J].
CHEN, SY ;
DOOLEN, G ;
HERRING, JR ;
KRAICHNAN, RH ;
ORSZAG, SA ;
SHE, ZS .
PHYSICAL REVIEW LETTERS, 1993, 70 (20) :3051-3054
[10]   Unified multifractal description of velocity increments statistics in turbulence:: Intermittency and skewness [J].
Chevillard, L. ;
Castaing, B. ;
Leveque, E. ;
Arneodo, A. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (01) :77-82