Breast Cancer Prognosis Risk Estimation Using Integrated Gene Expression and Clinical Data

被引:4
作者
Saini, Ashish [1 ]
Hou, Jingyu [1 ]
Zhou, Wanlei [1 ]
机构
[1] Deakin Univ, Sch Informat Technol, Melbourne, Vic 3125, Australia
关键词
MICROARRAY DATA; DISTANT METASTASIS; SIGNATURE; PREDICTION; SURVIVAL; PROVIDES;
D O I
10.1155/2014/459203
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background. Novel prognostic markers are needed so newly diagnosed breast cancer patients do not undergo any unnecessary therapy. Various microarray gene expression datasets based studies have generated gene signatures to predict the prognosis outcomes, while ignoring the large amount of information contained in established clinical markers. Nevertheless, small sample sizes in individual microarray datasets remain a bottleneck in generating robust gene signatures that show limited predictive power. The aim of this study is to achieve high classification accuracy for the good prognosis group and then achieve high classification accuracy for the poor prognosis group. Methods. We propose a novel algorithm called the IPRE (integrated prognosis risk estimation) algorithm. We used integrated microarray datasets from multiple studies to increase the sample sizes (similar to 2,700 samples). The IPRE algorithm consists of a virtual chromosome for the extraction of the prognostic gene signature that has 79 genes, and a multivariate logistic regression model that incorporates clinical data along with expression data to generate the risk score formula that accurately categorizes breast cancer patients into two prognosis groups. Results. The evaluation on two testing datasets showed that the IPRE algorithm achieved high classification accuracies of 82% and 87%, which was far greater than any existing algorithms.
引用
收藏
页数:15
相关论文
共 40 条
  • [1] Prediction of breast cancer prognosis using gene set statistics provides signature stability and biological context
    Abraham, Gad
    Kowalczyk, Adam
    Loi, Sherene
    Haviv, Izhak
    Zobel, Justin
    [J]. BMC BIOINFORMATICS, 2010, 11
  • [2] Towards Improved Cancer Diagnosis and Prognosis Using Analysis of Gene Expression Data and Computer Aided Imaging
    Alexe, Gabriela
    Monaco, James
    Doyle, Scott
    Basavanhally, Ajay
    Reddy, Anupama
    Seiler, Michael
    Ganesan, Shridar
    Bhanot, Gyan
    Madabhushi, Anant
    [J]. EXPERIMENTAL BIOLOGY AND MEDICINE, 2009, 234 (08) : 860 - 879
  • [3] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [4] Elucidating Prognosis and Biology of Breast Cancer Arising in Young Women Using Gene Expression Profiling
    Azim, Hatem A., Jr.
    Michiels, Stefan
    Bedard, Philippe L.
    Singhal, Sandeep K.
    Criscitiello, Carmen
    Ignatiadis, Michail
    Haibe-Kains, Benjamin
    Piccart, Martine J.
    Sotiriou, Christos
    Loi, Sherene
    [J]. CLINICAL CANCER RESEARCH, 2012, 18 (05) : 1341 - 1351
  • [5] Genes that mediate breast cancer metastasis to the brain
    Bos, Paula D.
    Zhang, Xiang H. -F.
    Nadal, Cristina
    Shu, Weiping
    Gomis, Roger R.
    Nguyen, Don X.
    Minn, Andy J.
    van de Vijver, Marc J.
    Gerald, William L.
    Foekens, John A.
    Massague, Joan
    [J]. NATURE, 2009, 459 (7249) : 1005 - U137
  • [6] Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity
    Chibon, Frederic
    Lagarde, Pauline
    Salas, Sebastien
    Perot, Gaelle
    Brouste, Veronique
    Tirode, Franck
    Lucchesi, Carlo
    de Reynies, Aurelien
    Kauffmann, Audrey
    Bui, Binh
    Terrier, Philippe
    Bonvalot, Sylvie
    Le Cesne, Axel
    Vince-Ranchere, Dominique
    Blay, Jean-Yves
    Collin, Francoise
    Guillou, Louis
    Leroux, Agnes
    Coindre, Jean-Michel
    Aurias, Alain
    [J]. NATURE MEDICINE, 2010, 16 (07) : 781 - U81
  • [7] Genomic and transcriptional aberrations linked to breast cancer pathophysiologies
    Chin, Koei
    DeVries, Sandy
    Fridlyand, Jane
    Spellman, Paul T.
    Roydasgupta, Ritu
    Kuo, Wen-Lin
    Lapuk, Anna
    Neve, Richard M.
    Qian, Zuwei
    Ryder, Tom
    Chen, Fanqing
    Feiler, Heidi
    Tokuyasu, Taku
    Kingsley, Chris
    Dairkee, Shanaz
    Meng, Zhenhang
    Chew, Karen
    Pinkel, Daniel
    Jain, Ajay
    Ljung, Britt Marie
    Esserman, Laura
    Albertson, Donna G.
    Waldman, Frederic M.
    Gray, Joe W.
    [J]. CANCER CELL, 2006, 10 (06) : 529 - 541
  • [8] Network-based classification of breast cancer metastasis
    Chuang, Han-Yu
    Lee, Eunjung
    Liu, Yu-Tsueng
    Lee, Doheon
    Ideker, Trey
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
  • [9] Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes
    Desmedt, Christine
    Haibe-Kains, Benjamin
    Wirapati, Pratyaksha
    Buyse, Marc
    Larsimont, Denis
    Bontempi, Gianluca
    Delorenzi, Mauro
    Piccart, Martine
    Sotiriou, Christos
    [J]. CLINICAL CANCER RESEARCH, 2008, 14 (16) : 5158 - 5165
  • [10] Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series
    Desmedt, Christine
    Piette, Fanny
    Loi, Sherene
    Wang, Yixin
    d'assignies, Mahasti Saghatchian
    Bergh, Jonas
    Lidereau, Rosette
    Ellis, Paul
    Harris, Adrian L.
    Klijn, Jan G. M.
    Foekens, John A.
    Cardoso, Fatima
    Piccart, Martine J.
    Buyse, Marc
    Sotiriou, Christos
    [J]. CLINICAL CANCER RESEARCH, 2007, 13 (11) : 3207 - 3214