Catalysis by protein acetyltransferase Gcn5

被引:13
作者
Albaugh, Brittany N. [1 ]
Denu, John M. [2 ,3 ]
机构
[1] Eastern Michigan Univ, Dept Chem, Ypsilanti, MI 48197 USA
[2] Univ Wisconsin, Wisconsin Inst Discovery, Madison, WI 53715 USA
[3] Univ Wisconsin, Sch Med & Publ Hlth, Dept Biomol Chem, Madison, WI 53715 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS | 2021年 / 1864卷 / 02期
基金
美国国家科学基金会;
关键词
Gcn5; KAT; HAT; Histone acetyltransferase; Catalysis; Inhibitor;
D O I
10.1016/j.bbagrm.2020.194627
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gcn5 serves as the defining member of the Gcn5-related N-acetyltransferase (GNAT) superfamily of proteins that display a common structural fold and catalytic mechanism involving the transfer of the acyl-group, primarily acetyl-, from CoA to an acceptor nucleophile. In the case of Gcn5, the target is the E-amino group of lysine primarily on histones. Over the years, studies on Gcn5 structure-function have often formed the basis by which we understand the complex activities and regulation of the entire protein acetyltransferase family. It is now appreciated that protein acetylation occurs on thousands of proteins and can reversibly regulate the function of many cellular processes. In this review, we provide an overview of our fundamental understanding of catalysis, regulation of activity and substrate selection, and inhibitor development for this archetypal acetyltransferase.
引用
收藏
页数:9
相关论文
共 115 条
[1]   Autoacetylation of the Histone Acetyltransferase Rtt109 [J].
Albaugh, Brittany N. ;
Arnold, Kevin M. ;
Lee, Susan ;
Denu, John M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (28) :24694-24701
[2]   KAT(ching) Metabolism by the Tail: Insight into the Links between Lysine Acetyltransferases and Metabolism [J].
Albaugh, Brittany N. ;
Arnold, Kevin M. ;
Denu, John M. .
CHEMBIOCHEM, 2011, 12 (02) :290-298
[3]   Kinetic Mechanism of the Rtt109-Vps75 Histone Acetyltransferase-Chaperone Complex [J].
Albaugh, Brittany N. ;
Kolonko, Erin M. ;
Denu, John M. .
BIOCHEMISTRY, 2010, 49 (30) :6375-6385
[4]   Autoacetylation induced specific structural changes in histone acetyltransferase domain of p300: Probed by surface enhanced Raman spectroscopy [J].
Arif, Mohammed ;
Kumar, G. V. Pavan ;
Narayana, Chandrabhas ;
Kundu, Tapas K. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (41) :11877-11879
[5]   Revealing Dynamic Protein Acetylation across Subcellular Compartments [J].
Baeza, Josue ;
Lawton, Alexis J. ;
Fan, Jing ;
Smallegan, Michael J. ;
Lienert, Ian ;
Gandhi, Tejas ;
Bernhardt, Oliver M. ;
Reiter, Lukas ;
Denu, John M. .
JOURNAL OF PROTEOME RESEARCH, 2020, 19 (06) :2404-2418
[6]   Mechanisms and Dynamics of Protein Acetylation in Mitochondria [J].
Baeza, Josue ;
Smallegan, Michael J. ;
Denu, John M. .
TRENDS IN BIOCHEMICAL SCIENCES, 2016, 41 (03) :231-244
[7]   Site-Specific Reactivity of Nonenzymatic Lysine Acetylation [J].
Baeza, Josue ;
Smallegan, Michael J. ;
Denu, John M. .
ACS CHEMICAL BIOLOGY, 2015, 10 (01) :122-128
[8]   Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation [J].
Balasubramanian, R ;
Pray-Grant, MG ;
Selleck, W ;
Grant, PA ;
Tan, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :7989-7995
[9]   Modulating PCAF/GCN5 Immune Cell Function through a PROTAC Approach [J].
Bassi, Zuni I. ;
Fillmore, Martin C. ;
Miah, Afjal H. ;
Chapman, Trevor D. ;
Maller, Claire ;
Roberts, Emma J. ;
Davis, Lauren C. ;
Lewis, Darcy E. ;
Galwey, Nicholas W. ;
Waddington, Kirsty E. ;
Parravicini, Valentino ;
Macmillan-Jones, Abigail L. ;
Gongora, Celine ;
Humphreys, Philip G. ;
Churcher, Ian ;
Prinjha, Rab K. ;
Tough, David F. .
ACS CHEMICAL BIOLOGY, 2018, 13 (10) :2862-2867
[10]   Structure of the hexapeptide xenobiotic acetyltransferase from Pseudomonas aeruginosa [J].
Beaman, TW ;
Sugantino, M ;
Roderick, SL .
BIOCHEMISTRY, 1998, 37 (19) :6689-6696