NEW QUADRATURE RULES FOR BERNSTEIN MEASURES ON THE INTERVAL [-1,1]

被引:0
作者
Berriochoa, Elias [1 ]
Cachafeiro, Alicia [1 ]
Garcia-Amor, Jose M. [1 ]
Marcellan, Francisco [2 ]
机构
[1] Univ Vigo, ETSI Ind, Vigo 36200, Spain
[2] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2008年 / 30卷
关键词
quadrature rules; orthogonal polynomials; measures on the real line; Bernstein measures; Chebyshev polynomials;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we obtain quadrature rules for Bernstein measures on [-1, 1], having a fixed number of nodes and weights such that they exactly integrate functions in the linear space of polynomials with real coefficients.
引用
收藏
页码:278 / 290
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 1975, AM MATH SOC C PUBLIC
[2]  
[Anonymous], 2005, AMS C PUBLICATIONS
[3]   A new numerical quadrature formula on the unit circle [J].
Berriochoa, E. ;
Cachafeiro, A. ;
Marcellan, F. .
NUMERICAL ALGORITHMS, 2007, 44 (04) :391-401
[4]   Connection between orthogonal polynomials on the unit circle and bounded interval [J].
Berriochoa, E ;
Cachafeiro, A ;
García-Amor, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 177 (01) :205-223
[5]   A connection between quadrature formulas on the unit circle and the interval [-1,1] [J].
Bultheel, A ;
Daruis, L ;
González-Vera, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (01) :1-14
[7]   SOME ESTIMATES OF COEFFICIENTS IN CHEBYSHEV SERIES EXPANSION OF A FUNCTION [J].
ELLIOTT, D ;
SZEKERES, G .
MATHEMATICS OF COMPUTATION, 1965, 19 (89) :25-&
[8]  
GARCIAAMOR J, 2003, THESIS U VIGO
[9]  
Gautschi W., 2004, Orthogonal Polynomials: Computation and Approximation, DOI DOI 10.1093/OSO/9780198506720.001.0001
[10]  
Geronimus Ya. L., 1961, ORTHOGONAL POLYNOMIA