Inverse Nodal Problem for Conformable Sturm-Liouville Operator with Jump Conditions

被引:1
作者
Goktas, Sertac [1 ]
机构
[1] Mersin Univ, Fac Sci & Letters, Dept Math, TR-33343 Mersin, Turkey
关键词
Conformable fractional Sturm-Liouville problem; Discontinuous conditions; Nodal points; Lipschitz stability; Pru?fer Substitutions; FRACTIONAL CALCULUS; SPECTRAL PROBLEMS; BOUNDARY; UNIQUENESS; EQUATIONS;
D O I
10.2298/FIL2217737G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a conformable fractional Sturm-Liouville problem with the discontinuous(or jump) condition inside the interval. The asymptotic formulas for the eigenvalues, nodal parameters (nodal points and nodal lengths) of this problem are calculated by the modified Pru center dot fer substitutions. Also, using these asymptotic formulas, an explicit formula for the potential functions is given. After all, we discuss Lipschitz stability for the considered problem.
引用
收藏
页码:5737 / 5749
页数:13
相关论文
共 50 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]   Inverse problems for a conformable fractional Sturm-Liouville operator [J].
Adalar, Ibrahim ;
Ozkan, Ahmet Sinan .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (06) :775-782
[3]   Conformable fractional Sturm-Liouville equation [J].
Allahverdiev, Bilender P. ;
Tuna, Huseyin ;
Yalcinkaya, Yuksel .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (10) :3508-3526
[4]   About a question of intrinsic value theory. [J].
Ambarzumian, V. .
ZEITSCHRIFT FUR PHYSIK, 1929, 53 (9-10) :690-695
[5]   Half-inverse problems for the quadratic pencil of theSturm-Liouvilleequations with impulse [J].
Amirov, Rauf ;
Ergun, Abdullah ;
Durak, Sevim .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) :915-924
[6]  
[Anonymous], 1963, Equations of mathematical physics
[7]   New properties of conformable derivative [J].
Atangana, Abdon ;
Baleanu, Dumitru ;
Alsaedi, Ahmed .
OPEN MATHEMATICS, 2015, 13 :889-898
[8]   THE DIRICHLET PROBLEM OF A CONFORMABLE ADVECTION-DIFFUSION EQUATION [J].
Avci, Derya aeae ;
Eroglu, Beyza Billur Iskender ;
Ozdemir, Necati .
THERMAL SCIENCE, 2017, 21 (01) :9-18
[9]  
Baleanu D., 2010, New Trends in Nanotechnology and Fractional Calculus Applications
[10]   A conformable fractional calculus on arbitrary time scales [J].
Benkhettou, Nadia ;
Hassani, Salima ;
Torres, Delfim F. M. .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) :93-98