Spectral clustering properties of block multilevel Hankel matrices

被引:29
作者
Fasino, D
Tilli, P
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-363100 Udine, Italy
[2] Scuola Normale Super Pisa, I-56100 Pisa, Italy
关键词
Hankel matrices; asymptotic spectral distribution;
D O I
10.1016/S0024-3795(99)00251-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of recent results concerning spectral distributions of Toeplitz matrices, we show that the singular values of a sequence of block p-level Hankel matrices H-n(mu), generated by a p-variate, matrix-valued measure mu whose singular part is finitely supported, are always clustered at zero, thus extending a result known when p = 1 and mu is real valued and Lipschitz continuous. The theorems hold for both eigenvalues and singular values; in the case of singular values, we allow the involved matrices to be rectangular. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 50 条
[41]   FREQUENCY ESTIMATION BASED ON HANKEL MATRICES AND THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS [J].
Andersson, Fredrik ;
Carlsson, Marcus ;
Tourneret, Jean-Yves ;
Wendt, Herwig .
2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
[42]   The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight [J].
Zhu, Mengkun ;
Emmart, Niall ;
Chen, Yang ;
Weems, Charles .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (09) :3272-3288
[43]   Total positivity and high relative accuracy for several classes of Hankel matrices [J].
Mainar, E. ;
Pena, J. M. ;
Rubio, B. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (04)
[44]   THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SEMICLASSICAL LAGUERRE WEIGHT [J].
Wang, Dan ;
Zhu, Mengkun ;
Chen, Yang .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (01) :53-62
[45]   THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SINGULARLY PERTURBED GAUSSIAN WEIGHT [J].
Wang, Dan ;
Zhu, Mengkun ;
Chen, Yang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (01) :153-160
[46]   The eigenvalues of a family of persymmetric anti-tridiagonal 2-Hankel matrices [J].
Akbulak, Mehmet ;
da Fonseca, C. M. ;
Yilmaz, Fatih .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 :352-357
[47]   A note on structured pseudospectra of block matrices [J].
Ferro, Richard ;
Virtanen, Jani A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 322 :18-24
[48]   Spectral distribution of symmetrized circulant matrices [J].
Bourget, Alain .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (02) :431-446
[49]   Orthogonal diagonalization for complex skew-persymmetric anti-tridiagonal Hankel matrices [J].
Gutierrez-Gutierrez, Jesus ;
Zarraga-Rodriguez, Marta .
SPECIAL MATRICES, 2016, 4 (01) :73-79
[50]   On the solutions of the equation AXB = C under Toeplitz-like and Hankel matrices constraint [J].
Yang, Juan ;
Deng, Yuan-bei .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (05) :2074-2094