Spectral clustering properties of block multilevel Hankel matrices

被引:29
作者
Fasino, D
Tilli, P
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-363100 Udine, Italy
[2] Scuola Normale Super Pisa, I-56100 Pisa, Italy
关键词
Hankel matrices; asymptotic spectral distribution;
D O I
10.1016/S0024-3795(99)00251-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of recent results concerning spectral distributions of Toeplitz matrices, we show that the singular values of a sequence of block p-level Hankel matrices H-n(mu), generated by a p-variate, matrix-valued measure mu whose singular part is finitely supported, are always clustered at zero, thus extending a result known when p = 1 and mu is real valued and Lipschitz continuous. The theorems hold for both eigenvalues and singular values; in the case of singular values, we allow the involved matrices to be rectangular. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 50 条
[21]   On the rank of Hankel matrices over finite fields [J].
Dwivedi, Omesh Dhar ;
Grinberg, Darij .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 641 :156-181
[22]   An operator approach to the inversion of certain Hankel matrices [J].
Zhang, Ruiming ;
Chen, Li-Chen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 470 :70-80
[23]   Hankel max-min matrices and their applications [J].
Tomaskova, Hana ;
Gavalec, Martin .
PROCEEDINGS OF 30TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS, PTS I AND II, 2012, :909-914
[24]   Spectral properties of flipped Toeplitz matrices and related preconditioning [J].
M. Mazza ;
J. Pestana .
BIT Numerical Mathematics, 2019, 59 :463-482
[25]   Spectral properties of flipped Toeplitz matrices and related preconditioning [J].
Mazza, M. ;
Pestana, J. .
BIT NUMERICAL MATHEMATICS, 2019, 59 (02) :463-482
[26]   On commutative algebras of Toeplitz-plus-Hankel matrices [J].
Kh. D. Ikramov ;
Yu. O. Vorontsov .
Computational Mathematics and Mathematical Physics, 2010, 50 :766-777
[27]   The eigenvalues of some anti-tridiagonal Hankel matrices [J].
da Fonseca, Carlos M. .
KUWAIT JOURNAL OF SCIENCE, 2018, 45 (01) :1-6
[28]   INTEGER POWERS OF ANTI-BIDIAGONAL HANKEL MATRICES [J].
da Silva, Joao Lita .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (01) :87-98
[29]   ON THE EXTREME EIGENVALUES OF TOEPLITZ AND REAL HANKEL INTERVAL MATRICES [J].
HERTZ, D .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1993, 4 (01) :83-90
[30]   Integer Powers of Anti-Bidiagonal Hankel Matrices [J].
Jo˜ao Lita da Silva .
Indian Journal of Pure and Applied Mathematics, 2018, 49 :87-98