A cubical approach to straightening

被引:8
作者
Kapulkin, Krzysztof [1 ]
Voevodsky, Vladimir [2 ]
机构
[1] Univ Western Ontario, Middlesex Coll, Dept Math, 1151 Richmond St, London, ON N6A 5B7, Canada
[2] Inst Adv Study, Sch Math, 1 Einstein Dr, Princeton, NJ 08540 USA
关键词
55U35 (primary); 18G55; 55U40 (secondary);
D O I
10.1112/topo.12173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a suitable choice of the cube category, we construct a Grothendieck topology on it such that sheaves with respect to this topology are exactly simplicial sets (thus establishing simplicial sets as a reflective subcategory of cubical sets). We then extend the construction of the homotopy coherent nerve to cubical categories and establish an analogue of Lurie's straightening-unstraightening construction.
引用
收藏
页码:1682 / 1700
页数:19
相关论文
共 16 条
[1]  
[Anonymous], 2009, HIGHER TOPOS THEORY, DOI DOI 10.1515/9781400830558
[2]  
Artin M., 1971, LECT NOTES MATH, V270
[3]  
Artin M., 1971, LECT NOTES MATH, V305
[4]  
Artin M., 1971, LECT NOTES MATH, V269
[5]  
Cisinski Denis-Charles., 2006, AST RISQUE, V308, P390
[6]  
Cohen, 2018, 21 INT C TYP PROOFS, V69
[7]   Categorical homotopy theory [J].
Jardine, J. F. .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2006, 8 (01) :71-144
[8]   Quasi-categories and Kan complexes [J].
Joyal, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 175 (1-3) :207-222
[9]  
Joyal A., 2008, NOTES SIMPLICI UNPUB