Symmetry group classification of three-dimensional Hamiltonian systems

被引:8
作者
Damianou, PA [1 ]
Sophocleous, C [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
Hamiltonian systems; symmetry groups; classification;
D O I
10.1016/S0893-9659(99)00166-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some results on the symmetry group classification for an autonomous Hamiltonian system with three degrees of freedom. The potentials considered are natural, i.e., depend on the position variables only and the symmetries considered are Lie point symmetries. With the exception of the harmonic oscillator or a free particle where the dimension is 24, we obtain all dimensions between 1 and 12, except 8. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:63 / 70
页数:8
相关论文
共 15 条
  • [1] [Anonymous], MATH ITS APPL
  • [2] Bluman G. W., 1974, APPL MATH SCI, V13
  • [3] Bluman GW, 1989, APPL MATH SCI, V81
  • [4] DAMIANOU PA, IN PRESS J MATH PHYS
  • [5] SYMMETRIES OF DIFFERENTIAL-EQUATIONS .4.
    GONZALEZGASCON, F
    GONZALEZLOPEZ, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (08) : 2006 - 2021
  • [6] NEWTONIAN SYSTEMS OF DIFFERENTIAL-EQUATIONS, INTEGRABLE VIA QUADRATURES, WITH TRIVIAL GROUP OF POINT SYMMETRIES
    GONZALEZGASCON, F
    GONZALEZLOPEZ, A
    [J]. PHYSICS LETTERS A, 1988, 129 (03) : 153 - 156
  • [7] Goringe V.M., 1988, Quaest. Math, V11, P95, DOI [10.1080/16073606.1988.9631946, DOI 10.1080/16073606.1988.9631946]
  • [8] GOVINDER KS, 1993, QUAEST MATH, V16, P405
  • [9] Ibragimov N. H., 1996, CRC HDB LIE GROUP AN, V1-3
  • [10] Leach P. G. L., 1994, LIE GROUPS APPL, V1, P146