Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions

被引:13
作者
Avalishvili, N. [1 ,2 ]
Japaridze, G., I [1 ,2 ]
Rossini, G. L. [3 ,4 ]
机构
[1] Ilia State Univ, Fac Nat Sci & Med, GE-0162 Tbilisi, Georgia
[2] Andronikashvili Inst Phys, GE-0177 Tbilisi, Georgia
[3] Univ Nacl La Plata, IFLP, CONICET, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
[4] Univ Nacl La Plata, Dept Fis, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
关键词
SINE-GORDON MODEL; ANISOTROPIC SUPEREXCHANGE INTERACTION; ELECTRON-ELECTRON INTERACTIONS; GROUND-STATE PROPERTIES; FIELD-INDUCED GAP; HELICOIDAL STRUCTURES; PHASE-TRANSITIONS; ISING-MODEL; MULTIFERROICS; ANTIFERROMAGNETS;
D O I
10.1103/PhysRevB.99.205159
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ground-state phase diagram of a spin S = 1/2 XXZ Heisenberg chain with spatially modu-lated Dzyaloshinskii-Moriya interaction H = Sigma(n){J((SnSn+1x)-S-x + (SnSn+1y)-S-y) + J(z)S(n)(z)S(n+1)(z) + [D-0 + (-1)D-n(1)]((SnSn+1y)-S-x - (SnSn+1x)-S-y)} is studied using the continuum-limit bosonization approach and extensive density-matrix renormalization group computations. It is shown that the effective continuum-limit bosonized theory of the model is given by the double-frequency sine-Gordon model (DSG) where the frequencies, i.e., the scaling dimensions of the two competing cosine perturbation terms, depend on the effective anisotropy parameter gamma* = J(z)/root J(2) + D-0(2) + D-1(2). Exploring the ground-state properties of the DSG model we show that the zero-temperature phase diagram contains the following four phases: (i) the ferromagnetic phase at gamma* <= -1; (ii) the gapless Luttinger-liquid (LL) phase at -1 < gamma* < gamma(C1)*= -1/root 2; (iii) the gapped composite (C1) phase characterized by coexistence of the long-range-ordered (LRO) dimerization pattern epsilon similar to (-1)(n)(SnSn+1) with the LRO alternating spin chirality pattern kappa similar to (-1)(n)((SnSn+1y)-S-x - (SnSn+1x)-S-y) at gamma(C1)* < gamma* < gamma(C2)*; and (iv) at gamma* > gamma(C2)* > 1 the gapped composite (C2) phase characterized in addition to the coexisting spin dimerization and alternating chirality patterns, by the presence of LRO antiferromagnetic order. The transition from the LL to the C1 phase at gamma(C1)* belongs to the Berezinskii-Kosterlitz-Thouless universality class, while the transition at gamma* = gamma(C2)* from C1 to C2 phase is of the Ising type.
引用
收藏
页数:12
相关论文
共 105 条
[1]   Field-induced gap in Cu benzoate and other S=1/2 antiferromagnetic chains [J].
Affleck, I ;
Oshikawa, M .
PHYSICAL REVIEW B, 1999, 60 (02) :1038-1056
[2]   The ALPS project release 1.3:: Open-source software for strongly correlated systems [J].
Albuquerque, A. F. ;
Alet, F. ;
Corboz, P. ;
Dayal, P. ;
Feiguin, A. ;
Fuchs, S. ;
Gamper, L. ;
Gull, E. ;
Guertler, S. ;
Honecker, A. ;
Igarashi, R. ;
Koerner, M. ;
Kozhevnikov, A. ;
Laeuchli, A. ;
Manmana, S. R. ;
Matsumoto, M. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Pawlowski, G. ;
Pollet, L. ;
Pruschke, T. ;
Schollwoeck, U. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :1187-1193
[3]   THE HEISENBERG XXZ HAMILTONIAN WITH DZYALOSHINSKY-MORIYA INTERACTIONS [J].
ALCARAZ, FC ;
WRESZINSKI, WF .
JOURNAL OF STATISTICAL PHYSICS, 1990, 58 (1-2) :45-56
[4]   Quantum critical phase diagram of bond alternating Ising model with Dzyaloshinskii-Moriya interaction: Signature of ground state fidelity [J].
Amiri, Neda ;
Langari, Abdollah .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (03) :537-541
[5]  
[Anonymous], 1998, Bosonization and Strongly Correlated Systems
[6]  
[Anonymous], 1964, Zh. Eksp. Teor. Fiz
[7]   Spin chirality induced by the Dzyaloshinskii-Moriya interaction and polarized neutron scattering [J].
Aristov, DN ;
Maleyev, SV .
PHYSICAL REVIEW B, 2000, 62 (02) :R751-R754
[8]   Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain [J].
Azimi, M. ;
Sekania, M. ;
Mishra, S. K. ;
Chotorlishvili, L. ;
Toklikishvili, Z. ;
Berakdar, J. .
PHYSICAL REVIEW B, 2016, 94 (06)
[9]   Helical multiferroics for electric field controlled quantum information processing [J].
Azimi, M. ;
Chotorlishvili, L. ;
Mishra, S. K. ;
Greschner, S. ;
Vekua, T. ;
Berakdar, J. .
PHYSICAL REVIEW B, 2014, 89 (02)
[10]   Nonperturbative study of the two-frequency sine-Gordon model [J].
Bajnok, Z ;
Palla, L ;
Takács, G ;
Wágner, F .
NUCLEAR PHYSICS B, 2001, 601 (03) :503-538