Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting

被引:615
|
作者
Rausch, Benjamin [1 ]
Symes, Mark D. [1 ]
Chisholm, Greig [1 ]
Cronin, Leroy [1 ]
机构
[1] Univ Glasgow, Sch Chem, WestCHEM, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
OXYGEN EVOLUTION; ELECTRON; OXIDATION; H-2;
D O I
10.1126/science.1257443
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The electrolysis of water using renewable energy inputs is being actively pursued as a route to sustainable hydrogen production. Here we introduce a recyclable redox mediator (silicotungstic acid) that enables the coupling of low-pressure production of oxygen via water oxidation to a separate, catalytic hydrogen production step outside the electrolyzer that requires no post-electrolysis energy input. This approach sidesteps the production of high-pressure gases inside the electrolytic cell (a major cause of membrane degradation) and essentially eliminates the hazardous issue of product gas crossover at the low current densities that characterize renewables-driven water-splitting devices. We demonstrated that a platinum-catalyzed system can produce pure hydrogen over 30 times faster than state-of-the-art proton exchange membrane electrolyzers at equivalent platinum loading.
引用
收藏
页码:1326 / 1330
页数:5
相关论文
共 50 条
  • [31] Enhanced catalytic activities of Fe anchored on graphene substrates for water splitting and hydrogen evolution
    Wan, Renzhuo
    Wang, Chenying
    Chen, Rong
    Liu, Min
    Yang, Fan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (75) : 32039 - 32049
  • [32] Splitting Water on Metal Oxide Surfaces
    Xu, Hu
    Zhang, Rui Qin
    Ng, Alan M. C.
    Djurisic, Aleksandra B.
    Chan, Hung Tat
    Chan, Wai Kin
    Tong, S. Y.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40): : 19710 - 19715
  • [33] Metal Oxide Photoanodes for Water Splitting
    Augustynski, J.
    Alexander, B. D.
    Solarska, R.
    PHOTOCATALYSIS, 2011, 303 : 1 - 38
  • [34] Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting
    Hen Dotan
    Avigail Landman
    Stafford W. Sheehan
    Kirtiman Deo Malviya
    Gennady E. Shter
    Daniel A. Grave
    Ziv Arzi
    Nachshon Yehudai
    Manar Halabi
    Netta Gal
    Noam Hadari
    Coral Cohen
    Avner Rothschild
    Gideon S. Grader
    Nature Energy, 2019, 4 : 786 - 795
  • [35] A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization
    You, Bo
    Liu, Xuan
    Jiang, Nan
    Sun, Yujie
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (41) : 13639 - 13646
  • [36] Hydrogen Production via Thermo chemical Water Splitting Process by Alkali Metal Redox Cycle
    Miyaoka, Hiroki
    Ichikawa, Takayuki
    Kojima, Yoshitsugu
    Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2021, 100 (05): : 29 - 44
  • [37] Decoupled Electrochemical Water Splitting: From Fundamentals to Applications
    McHugh, Patrick J.
    Stergiou, Athanasios D.
    Symes, Mark D.
    ADVANCED ENERGY MATERIALS, 2020, 10 (44)
  • [38] Molecular Catalytic Assemblies for Electrodriven Water Splitting
    Joya, Khurram Saleem
    Valles-Pardo, Jose L.
    Joya, Yasir F.
    Eisenmayer, Thomas
    Thomas, Brijith
    Buda, Francesco
    de Groot, Huub J. M.
    CHEMPLUSCHEM, 2013, 78 (01): : 35 - 47
  • [39] Cobalt Phosphide Modified Titanium Oxide Nanophotocatalysts with Significantly Enhanced Photocatalytic Hydrogen Evolution from Water Splitting
    Yue, Xinzheng
    Yi, Shasha
    Wang, Runwei
    Zhang, Zongtao
    Qiu, Shilun
    SMALL, 2017, 13 (14)
  • [40] Stable Tetrasubstituted Quinone Redox Reservoir for Enhancing Decoupled Hydrogen and Oxygen Evolution
    Wang, Fei
    Sheng, Hongyuan
    Li, Wenjie
    Gerken, James B.
    Jin, Song
    Stahl, Shannon S.
    ACS ENERGY LETTERS, 2021, 6 (04): : 1533 - 1539