Robust synchronization of drive-response chaotic systems via adaptive sliding mode control

被引:35
作者
Li, Wang-Long [2 ]
Chang, Kuo-Ming [1 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Mech Engn, Kaohsiung 807, Taiwan
[2] Natl Cheng Kung Univ, Inst Nanotechnol & Microsyst Engn, Tainan 701, Taiwan
关键词
ACTIVE CONTROL; LORENZ SYSTEMS; PARAMETERS;
D O I
10.1016/j.chaos.2007.06.067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A robust adaptive sliding control scheme is developed in this study to achieve synchronization for two identical chaotic systems in the presence of uncertain system parameters, external disturbances and nonlinear control inputs. All adaptation algorithm is given based oil the Lyapunov stability theory. Using this adaptation technique to estimate the upper-bounds of parameter variation and external disturbance uncertainties, all adaptive sliding mode controller is then constructed without requiring the bounds of parameter and disturbance uncertainties to be known in advance. It is proven that the proposed adaptive sliding mode controller can maintain the existence of sliding mode in finite time in uncertain chaotic systems. Finally, numerical simulations are presented to show the effectiveness of the proposed control scheme. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2086 / 2092
页数:7
相关论文
共 17 条
[1]   Sequential synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1041-1044
[2]  
Chen G., 1998, CHAOS ORDER METHODOL
[3]   Chaos synchronization by using intermittent parametric adaptive control method [J].
Dai, D ;
Ma, XK .
PHYSICS LETTERS A, 2001, 288 (01) :23-28
[4]   HARMONIC-BALANCE METHODS FOR THE ANALYSIS OF CHAOTIC DYNAMICS IN NONLINEAR-SYSTEMS [J].
GENESIO, R ;
TESI, A .
AUTOMATICA, 1992, 28 (03) :531-548
[5]  
HENDRIK R, 2002, PHYS LETT A, V300, P182
[6]   Synchronization of two different systems by using generalized active control [J].
Ho, MC ;
Hung, YC .
PHYSICS LETTERS A, 2002, 301 (5-6) :424-428
[7]   Parameters identification and adaptive synchronization of chaotic systems with unknown parameters [J].
Huang, LL ;
Wang, M ;
Feng, RP .
PHYSICS LETTERS A, 2005, 342 (04) :299-304
[8]   Synchronization of chaotic systems via nonlinear control [J].
Huang, LL ;
Feng, RP ;
Wang, M .
PHYSICS LETTERS A, 2004, 320 (04) :271-275
[9]   Integral-observer-based chaos synchronization [J].
Jiang, GP ;
Zheng, WX ;
Tang, WKS ;
Chen, GR .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (02) :110-114
[10]   Adaptive control and synchronization of Lorenz systems [J].
Liao, TL ;
Lin, SH .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1999, 336 (06) :925-937