Direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation and the modified nonlinear Schrodinger equation

被引:36
作者
Chen, XJ [1 ]
Yang, JK
机构
[1] Univ Vermont, Dept Math & Stat, Burlington, VT 05401 USA
[2] Jinan Univ, Dept Phys, Guangzhou 510632, Peoples R China
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 06期
关键词
D O I
10.1103/PhysRevE.65.066608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A direct perturbation theory for solitons of the derivative nonlinear Schrodinger (DNLS) equation is developed based on a closure of eigenfunctions of the linearized DNLS equation around a one-soliton solution. The slow evolution of soliton parameters and the perturbation-induced radiation are obtained. Under the known simple gaugelike transformation, these results are transformed into those for the perturbed modified nonlinear Schrodinger (MNLS) equation describing propagation of femtosecond pulses in optical fibers. A calculation of the perturbation-induced radiation fields for the perturbed DNLS and MNLS equations is also made. Our results for the perturbed MNLS equation can be reduced perfectly to those for the perturbed nonlinear Schrodinger equation in the small nonlinear-dispersion limit.
引用
收藏
页数:12
相关论文
共 20 条
[1]  
Agrawal G, 1989, Nonlinear Fiber Optics
[2]   QUADRATIC BUNDLE AND NON-LINEAR EQUATIONS [J].
GERDZHIKOV, VS ;
IVANOV, MI ;
KULISH, PP .
THEORETICAL AND MATHEMATICAL PHYSICS, 1980, 44 (03) :784-795
[3]   A direct perturbation theory for dark solitons based on a complete set of the squared Jost solutions [J].
Chen, XJ ;
Chen, ZD ;
Huang, NN .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (33) :6929-6947
[4]  
Hasegawa A., 1995, Solitons in Optical Communications
[5]  
KARPMAN VI, 1978, ZH EKSP TEOR FIZ, V46, P281
[6]   PERTURBATION-THEORY FOR SOLITONS IN OPTICAL FIBERS [J].
KAUP, DJ .
PHYSICAL REVIEW A, 1990, 42 (09) :5689-5694
[7]   CLOSURE OF SQUARED ZAKHAROV-SHABAT EIGENSTATES [J].
KAUP, DJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 54 (03) :849-864
[8]   EXACT SOLUTION FOR A DERIVATIVE NON-LINEAR SCHRODINGER EQUATION [J].
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (04) :798-801
[9]   SOLITONS AS PARTICLES, OSCILLATORS, AND IN SLOWLY CHANGING MEDIA - SINGULAR PERTURBATION-THEORY [J].
KAUP, DJ ;
NEWELL, AC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 361 (1707) :413-446
[10]   SOLITONS UNDER PERTURBATIONS [J].
KEENER, JP ;
MCLAUGHLIN, DW .
PHYSICAL REVIEW A, 1977, 16 (02) :777-790