Invariant measures of homeomorphisms and applications to the stability of an hyperbolic PDE

被引:1
作者
Aassila, M [1 ]
机构
[1] Univ Fribourg, Math Inst, CH-1700 Fribourg, Switzerland
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2004年 / 35卷 / 01期
关键词
stability; global existence; asymptotic bahaviour;
D O I
10.1007/s00574-004-0005-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the invariant measures of homeomorphisms, we study in this paper the asymptotic behavior of the energy E(t) of an hyperbolic partial differential equation in a moving domain. The behavior of E(t) as t --> infinity depends essentially on the number theoretical characteristics of the rotation number of the homeomorphism.
引用
收藏
页码:83 / 122
页数:40
相关论文
共 35 条
[1]  
AASSILA M, IN PRESS J INEQUALIT
[2]  
[Anonymous], 1986, MATH METHODS APPL SC
[3]  
Balazs N., 1961, J. Math. Anal. Appl., V3, P472, DOI DOI 10.1016/0022-247X(61)90071-3
[4]   CASIMIR EFFECT FOR MOVING BODIES [J].
CALUCCI, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (13) :3873-3882
[5]   FLOQUET THEORY FOR PARABOLIC DIFFERENTIAL-EQUATIONS [J].
CHOW, SN ;
LU, KN ;
MALLETPARET, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (01) :147-200
[6]   LONG-TIME BEHAVIOR AND ENERGY GROWTH FOR ELECTROMAGNETIC-WAVES REFLECTED BY A MOVING BOUNDARY [J].
COOPER, J .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1993, 41 (10) :1365-1370
[7]   ASYMPTOTIC-BEHAVIOR FOR THE VIBRATING STRING WITH A MOVING BOUNDARY [J].
COOPER, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 174 (01) :67-87
[8]   THE SPECTRUM OF A HYPERBOLIC EVOLUTION OPERATOR [J].
COOPER, J ;
KOCH, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (02) :301-328
[9]  
Cornfeld I. P., 1982, Ergodic Theory
[10]  
De Bievre S, 1998, STUD MATH, V130, P199