A numerical method based on fractional-order generalized Taylor wavelets for solving distributed-order fractional partial differential equations

被引:39
作者
Yuttanan, Boonrod [1 ]
Razzaghi, Mohsen [2 ]
Vo, Thieu N. [3 ]
机构
[1] Prince Songkla Univ, Fac Sci, Div Computat Sci, Algebra & Applicat Res Unit, Hat Yai 90110, Thailand
[2] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[3] Ton Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City, Vietnam
关键词
Numerical method; Taylor wavelet; Numerical solution; Fractional partial differential equation; Distributed-order differential equation; OPERATIONAL MATRIX; DIFFUSION EQUATION; PETROV-GALERKIN; CALCULUS; MODEL; APPROXIMATION; INTEGRATION;
D O I
10.1016/j.apnum.2020.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a numerical method for solving distributed-order fractional partial differential equations (FPDEs). For this method, we first introduce fractional-order generalized Taylor wavelets (FOGTW). An estimation for the error of the approximation is also studied. In addition, by using the regularized beta function we give a formula for determining the Riemann-Liouville fractional integral operator for the FOGTW. Combining this formula with the Gauss-Legendre quadrature, we obtain a numerical method for solving distributed-order FPDEs. Several illustrative examples are given to show the applicability and the accuracy of the proposed method. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:349 / 367
页数:19
相关论文
共 73 条
[1]   An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate [J].
Abbaszadeh, Mostafa ;
Dehghan, Mehdi .
NUMERICAL ALGORITHMS, 2017, 75 (01) :173-211
[2]  
Abramowitz M., 1973, HDB MATH FUNCTIONS
[3]  
[Anonymous], 1997, Appl. Mech. Rev, DOI DOI 10.1115/1.3101682
[4]   Distributed-order fractional wave equation on a finite domain: creep and forced oscillations of a rod [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan ;
Zorica, Dusan .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2011, 23 (04) :305-318
[5]   Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan ;
Zorica, Dusan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106) :1893-1917
[6]   On a fractional distributed-order oscillator [J].
Atanackovic, TM ;
Budincevic, M ;
Pilipovic, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (30) :6703-6713
[7]   A generalized model for the uniaxial isothermal deformation of a viscoelastic body [J].
Atanackovic, TM .
ACTA MECHANICA, 2002, 159 (1-4) :77-86
[8]   Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod [J].
Atanackovica, T. M. ;
Pilipovic, S. ;
Zorica, D. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2011, 49 (02) :175-190
[9]  
Bagley R.L., 2000, INT J APPL MATH, V2, P965
[10]   FRACTIONAL CALCULUS IN THE TRANSIENT ANALYSIS OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
TORVIK, PJ .
AIAA JOURNAL, 1985, 23 (06) :918-925