DECONVOLUTION WITH UNKNOWN ERROR DISTRIBUTION

被引:60
作者
Johannes, Jan [1 ]
机构
[1] Heidelberg Univ, Inst Appl Math, D-69120 Heidelberg, Germany
关键词
Deconvolution; Fourier transform; kernel estimation; spectral cut off; Sobolev space; Source condition; optimal rate of convergence; NONPARAMETRIC DECONVOLUTION; TIKHONOV REGULARIZATION; DENSITY-ESTIMATION; OPTIMAL RATES; CONVERGENCE; ESTIMATOR; MODELS;
D O I
10.1214/08-AOS652
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating a density f(X) using a sample Y-l,....Y-n from f(Y) = f(X) star f(is an element of), where f(is an element of) is an unknown density. We assume that all additional sample is an element of(l),...,is an element of(m) from f(is an element of) is observed. Estimators of f(X) and its derivatives are constructed by using nonparametric estimators of f(X) and f(is an element of) and by applying a spectral cut-off in the Fourier domain. We derive the rate of convergence of the estimators ill case of a known and unknown error density Where it is assumed that f(X) satisfies a polynomial, logarithmic or general source condition. It is shown that the proposed estimators are asymptotically optimal ill a minimax sense ill the models with known or unknown error density, if the density f(X) belongs to a Sobolev space H-p and f(is an element of) is ordinary smooth or supersmooth.
引用
收藏
页码:2301 / 2323
页数:23
相关论文
共 41 条
[1]  
[Anonymous], 2000, MATH ITS APPL
[2]  
[Anonymous], 1986, Iteration Procedures in Ill-posed Problems
[3]  
BIGOT J, 2006, LOG DENSITY DECONVOL
[4]   Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model [J].
Butucea, C ;
Matias, C .
BERNOULLI, 2005, 11 (02) :309-340
[5]  
CARRASCO M, 2002, 138 IDEI U TOUL 1
[6]   OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY [J].
CARROLL, RJ ;
HALL, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1184-1186
[7]   Adaptive estimation for inverse problems with noisy operators [J].
Cavalier, L ;
Hengartner, NW .
INVERSE PROBLEMS, 2005, 21 (04) :1345-1361
[8]   Penalized contrast estimator for adaptive density deconvolution [J].
Comte, Fabienne ;
Rozenholc, Yves ;
Taupin, Marie-Luce .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (03) :431-452
[9]   CONSISTENT DECONVOLUTION IN DENSITY-ESTIMATION [J].
DEVROYE, L .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (02) :235-239
[10]  
DIGGLE PJ, 1993, J ROY STAT SOC B MET, V55, P523