Prognostic prediction by liver tissue proteomic profiling in patients with colorectal liver metastases

被引:3
作者
Reyes, Adalgiza [1 ]
Marti, Josep [1 ]
Marfa, Santiago [2 ]
Jimenez, Wladimiro [2 ,3 ]
Reichenbach, Vedrana [2 ]
Pelegrina, Amalia [1 ]
Fondevila, Constantino [1 ]
Garcia Valdecasas, Juan Carlos [1 ]
Fuster, Josep [1 ]
机构
[1] Hosp Clin Barcelona, IDIBAPS, CIBERehd, Liver Surg & Transplantat Unit,Dept Surg,ICMDM, Villarroel 170, E-08036 Barcelona, Spain
[2] Hosp Clin Barcelona, IDIBAPS, CIBERehd, Biochem & Mol Genet Serv, Villarroel 170, E-08036 Barcelona, Spain
[3] Univ Barcelona, Physiol Sci Dept 1, Casanova 143, E-08036 Barcelona, Spain
关键词
biomarker; colorectal cancer; liver metastases; outcomes research; prognosis; proteomic analysis; DIFFERENTIALLY EXPRESSED PROTEINS; CANCER; BIOMARKERS; MANAGEMENT; RESECTION;
D O I
10.2217/fon-2016-0461
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Aim: To obtain proteomic profiles in patients with colorectal liver metastases (CRLM) and identify the relationship between profiles and the prognosis of CRLM patients. Materials & methods: Prognosis prediction (favorable or unfavorable according to Fong's score) by a classification and regression tree algorithm of surface-enhanced laser desorption/ionization TOF-MS proteomic profiles from cryopreserved CRLM (patients) and normal liver tissue (controls). Results: The protein peak 7371 m/z showed the clearest differences between CRLM and control groups (94.1% sensitivity, 100% specificity, p < 0.001). The algorithm that best differentiated favorable and unfavorable groups combined 2970 and 2871 m/z protein peaks (100% sensitivity, 90% specificity). Conclusion: Proteomic profiling in liver samples using classification and regression tree algorithms is a promising technique to differentiate healthy subjects from CRLM patients and to classify the severity of CRLM patients.
引用
收藏
页码:875 / 882
页数:8
相关论文
共 28 条
[1]  
[Anonymous], MED CLIN BARC
[2]   Contributions of advanced proteomics technologies to cancer diagnosis [J].
Ciordia S. ;
de los Ríos V. ;
Albar J.-P. .
Clinical and Translational Oncology, 2006, 8 (8) :566-580
[3]   Colorectal cancer [J].
Cunningham, David ;
Atkin, Wendy ;
Lenz, Heinz-Josef ;
Lynch, Henry T. ;
Minsky, Bruce ;
Nordlinger, Bernard ;
Starling, Naureen .
LANCET, 2010, 375 (9719) :1030-1047
[4]   Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer - Analysis of 1001 consecutive cases [J].
Fong, Y ;
Fortner, J ;
Sun, RL ;
Brennan, MF ;
Blumgart, LH .
ANNALS OF SURGERY, 1999, 230 (03) :309-318
[5]  
Gemoll Timo, 2010, Archives of Physiology and Biochemistry, V116, P188, DOI 10.3109/13813455.2010.495130
[6]  
González-González M, 2013, CANCER GENOM PROTEOM, V10, P19
[7]  
Guo Yurong, 2007, Proc Am Thorac Soc, V4, P9, DOI 10.1513/pats.200608-156JG
[8]  
Jemal A, 2009, CA-CANCER J CLIN, V59, P225, DOI [10.3322/caac.20006, 10.3322/caac.21254, 10.3322/caac.21332, 10.3322/caac.21551, 10.3322/caac.20073, 10.3322/caac.21387, 10.3322/caac.21654, 10.3322/caac.21601]
[9]   Multidisciplinary approach of colorectal liver metastases [J].
Juez, Ignacio ;
Rubio, Carmen ;
Figueras, Joan .
CLINICAL & TRANSLATIONAL ONCOLOGY, 2011, 13 (10) :721-727
[10]   The implications of colorectal cancer molecular biology in clinical practice [J].
Kargozaran, Harned ;
Kahlenberg, Morton ;
Khatri, Vijay P. .
SURGICAL ONCOLOGY CLINICS OF NORTH AMERICA, 2008, 17 (02) :341-+