Extremality Conditions and Regularity of Solutions to Optimal Partition Problems Involving Laplacian Eigenvalues

被引:18
作者
Ramos, Miguel [1 ]
Tavares, Hugo [2 ]
Terracini, Susanna [3 ]
机构
[1] Univ Lisbon, Fac Sci, Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, Ctr Math Anal Geometry & Dynam Syst, Av Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Univ Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-20123 Turin, Italy
关键词
SPECTRAL MINIMAL PARTITIONS; NODAL DOMAINS; HARMONIC-FUNCTIONS; ELLIPTIC-SYSTEMS; SEGREGATION; COMPETITION; BOUNDS;
D O I
10.1007/s00205-015-0934-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R(N)be an open bounded domain and m is an element of N. Given k(1),...k(m) is an element of N, we consider a wide class of optimal partition problems involving Dirichlet eigenvalues of elliptic operators, of the following form inf {F(lambda(k1)(omega 1),...,lambda k(m) (omega(m))) : (omega 1,...omega(m)) is an element of P-m(Omega)}, where lambda(ki) (omega i) denotes the k (i)-th eigenvalue of (-Delta, H-0(1)(omega(i))) counting multiplicities, and P-m(Omega) is the set of all open partitions of , Omega namely P-m(Omega) = {omega(1),...,.m(m)) : omega(i) subset of Omega open, omega(i) boolean AND omega(j) = empty set for all i not equal j}. While the existence of a quasi-open optimal partition follows from a general result by Bucur, Buttazzo and Henrot [Adv Math Sci Appl 8(2):571-579, 1998], the aim of this paper is to associate with such minimal partitions and their eigenfunctions some suitable extremality conditions and to exploit them, proving as well the Lipschitz continuity of some eigenfunctions, and the regularity of the partition in the sense that the free boundary is, up to a residual set, locally a hypersurface. This last result extends the ones in the paper by Caffarelli and Lin [J Sci Comput 31(1-2):5-18, 2007] to the case of higher eigenvalues.
引用
收藏
页码:363 / 443
页数:81
相关论文
共 42 条
[1]  
[Anonymous], 1989, GRAD TEXTS MATH
[2]  
[Anonymous], ADV MATH SCI APPL
[3]   The Number of Nodal Domains on Quantum Graphs as a Stability Index of Graph Partitions [J].
Band, Ram ;
Berkolaiko, Gregory ;
Raz, Hillel ;
Smilansky, Uzy .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 311 (03) :815-838
[4]   On entire solutions of an elliptic system modeling phase separations [J].
Berestycki, Henri ;
Terracini, Susanna ;
Wang, Kelei ;
Wei, Juncheng .
ADVANCES IN MATHEMATICS, 2013, 243 :102-126
[5]   CRITICAL PARTITIONS AND NODAL DEFICIENCY OF BILLIARD EIGENFUNCTIONS [J].
Berkolaiko, Gregory ;
Kuchment, Peter ;
Smilansky, Uzy .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (06) :1517-1540
[6]   NUMERICAL SIMULATIONS FOR NODAL DOMAINS AND SPECTRAL MINIMAL PARTITIONS [J].
Bonnaillie-Noel, Virginie ;
Helffer, Bernard ;
Vial, Gregory .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (01) :221-246
[7]   OPTIMAL PARTITIONS FOR EIGENVALUES [J].
Bourdin, Blaise ;
Bucur, Dorin ;
Oudet, Edouard .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06) :4100-4114
[8]  
Bucur D, 1998, Adv Math Sci Appl, V8, P571
[9]  
Bucur D., 2005, Prog. Nonlinear Differ. Equ. Appl, V65
[10]   Lipschitz Regularity of the Eigenfunctions on Optimal Domains [J].
Bucur, Dorin ;
Mazzoleni, Dario ;
Pratelli, Aldo ;
Velichkov, Bozhidar .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 216 (01) :117-151