Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock

被引:41
作者
Chen, L. -J. [1 ,2 ]
Wang, S. [1 ,2 ]
Wilson, L. B., III [1 ]
Schwartz, S. [3 ]
Bessho, N. [1 ,2 ]
Moore, T. [1 ]
Gershman, D. [1 ]
Giles, B. [1 ]
Malaspina, D. [3 ]
Wilder, F. D. [3 ]
Ergun, R. E. [3 ]
Hesse, M. [4 ]
Lai, H. [5 ]
Russell, C. [5 ]
Strangeway, R. [5 ]
Torbert, R. B. [6 ]
Vinas, A. F. - [1 ]
Burch, J. [6 ]
Lee, S. [1 ]
Pollock, C. [7 ]
Dorelli, J. [1 ]
Paterson, W. [1 ]
Ahmadi, N. [3 ]
Goodrich, K. [3 ]
Lavraud, B. [8 ]
Le Contel, O. [9 ]
Khotyaintsev, Yu. V. [10 ]
Lindqvist, P. -A. [11 ]
Boardsen, S. [1 ,2 ]
Wei, H. [5 ]
Le, A. [12 ]
Avanov, L. [1 ,2 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Univ Maryland, Dept Astron, College Pk, MD 20747 USA
[3] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80305 USA
[4] Univ Bergen, N-5020 Bergen, Norway
[5] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[6] Southwest Res Inst, San Antonio, TX 78238 USA
[7] Denali Sci, Healy, AK 99743 USA
[8] Univ Toulouse UPS, Inst Rech Astrophys & Planetol, CNRS, CNES, F-31028 Toulouse 4, France
[9] Univ Paris Sud, Observ Paris, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Sorbonne Univ, F-91128 Palaiseau, France
[10] Swedish Inst Space Phys, SE-75121 Uppsala, Sweden
[11] KTH Royal Inst Technol, SE-11428 Stockholm, Sweden
[12] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
COLLISIONLESS SHOCK; MACH NUMBER; DISTRIBUTIONS; DEMAGNETIZATION; INSTABILITIES; MECHANISM; WAVES; BETA;
D O I
10.1103/PhysRevLett.120.225101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.
引用
收藏
页数:6
相关论文
共 48 条
[1]   Measurement of large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock [J].
Bale, S. D. ;
Mozer, F. S. .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[2]   Bipolar electrostatic structures in the shock transition region: Evidence of electron phase space holes [J].
Bale, SD ;
Kellogg, PJ ;
Larson, DE ;
Lin, RP ;
Goetz, K ;
Lepping, RP .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (15) :2929-2932
[3]   NEW MECHANISM FOR ELECTRON HEATING IN SHOCKS [J].
BALIKHIN, M ;
GEDALIN, M ;
PETRUKOVICH, A .
PHYSICAL REVIEW LETTERS, 1993, 70 (09) :1259-1262
[4]   A study of the dispersion of the electron distribution in the presence of E and B gradients: Application to electron heating at quasi-perpendicular shocks [J].
Balikhin, M ;
Krasnosel'skikh, VV ;
Woolliscroft, LJC ;
Gedalin, M .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A2) :2029-2040
[5]   Small-scale structure of the SN 1006 shock with Chandra observations [J].
Bamba, A ;
Yamazaki, R ;
Ueno, M ;
Koyama, K .
ASTROPHYSICAL JOURNAL, 2003, 589 (02) :827-837
[6]   INSTABILITY, TURBULENCE, AND CONDUCTIVITY IN CURRENT-CARRYING PLASMA [J].
BUNEMAN, O .
PHYSICAL REVIEW LETTERS, 1958, 1 (01) :8-9
[7]   Electron-scale measurements of magnetic reconnection in space [J].
Burch, J. L. ;
Torbert, R. B. ;
Phan, T. D. ;
Chen, L. -J. ;
Moore, T. E. ;
Ergun, R. E. ;
Eastwood, J. P. ;
Gershman, D. J. ;
Cassak, P. A. ;
Argall, M. R. ;
Wang, S. ;
Hesse, M. ;
Pollock, C. J. ;
Giles, B. L. ;
Nakamura, R. ;
Mauk, B. H. ;
Fuselier, S. A. ;
Russell, C. T. ;
Strangeway, R. J. ;
Drake, J. F. ;
Shay, M. A. ;
Khotyaintsev, Yu. V. ;
Lindqvist, P. -A. ;
Marklund, G. ;
Wilder, F. D. ;
Young, D. T. ;
Torkar, K. ;
Goldstein, J. ;
Dorelli, J. C. ;
Avanov, L. A. ;
Oka, M. ;
Baker, D. N. ;
Jaynes, A. N. ;
Goodrich, K. A. ;
Cohen, I. J. ;
Turner, D. L. ;
Fennell, J. F. ;
Blake, J. B. ;
Clemmons, J. ;
Goldman, M. ;
Newman, D. ;
Petrinec, S. M. ;
Trattner, K. J. ;
Lavraud, B. ;
Reiff, P. H. ;
Baumjohann, W. ;
Magnes, W. ;
Steller, M. ;
Lewis, W. ;
Saito, Y. .
SCIENCE, 2016, 352 (6290)
[8]   MAGNETO-HYDRODYNAMIC SHOCKS [J].
DEHOFFMANN, F ;
TELLER, E .
PHYSICAL REVIEW, 1950, 80 (04) :692-703
[9]   Particle simulation study of electron heating by counter-streaming ion beams ahead of supernova remnant shocks [J].
Dieckmann, M. E. ;
Bret, A. ;
Sarri, G. ;
Perez Alvaro, E. ;
Kourakis, I. ;
Borghesi, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (08)
[10]   The Axial Double Probe and Fields Signal Processing for the MMS Mission [J].
Ergun, R. E. ;
Tucker, S. ;
Westfall, J. ;
Goodrich, K. A. ;
Malaspina, D. M. ;
Summers, D. ;
Wallace, J. ;
Karlsson, M. ;
Mack, J. ;
Brennan, N. ;
Pyke, B. ;
Withnell, P. ;
Torbert, R. ;
Macri, J. ;
Rau, D. ;
Dors, I. ;
Needell, J. ;
Lindqvist, P. -A. ;
Olsson, G. ;
Cully, C. M. .
SPACE SCIENCE REVIEWS, 2016, 199 (1-4) :167-188