Monotone iterative technique for addressing impulsive integro-differential equations in Banach spaces

被引:56
作者
Li, Yonxiang [1 ]
Liu, Zhe [1 ]
机构
[1] NW Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
impulsive integro-differential equation; initial value problem; cone; lower and upper solution; measure of noncompactness;
D O I
10.1016/j.na.2005.11.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use a monotone iterative technique in the presence of lower and upper solutions to discuss the existence of solutions for the initial value problem of the impulsive integro-differential equation of Volterra type in a Banach space E {u'(t) = f(t, u (t), Tu(t)), t is an element of J, t not equal t(k), {Delta u vertical bar(t=tk) = I-k(u(t(k))), k = 1, 2, ...., m, {u(0) = x(0), where f is an element of C(J x E x E, E), J = [0, a], 0 < t(1) < t(2) < ... < t(m) < a, and I-k is an element of C(E, E), k = 1, 2,..., m. Under wide monotone conditions and the noncompactness measure condition of nonlinearity f, we obtain the existence of extremal solutions and a unique solution between lower and upper solutions. Our result improves and extends some relevant results in abstract differential equations. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 13 条
[1]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[2]   MONOTONE ITERATIVE TECHNIQUE FOR DIFFERENTIAL-EQUATIONS IN A BANACH-SPACE [J].
DU, SW ;
LAKSHMIKANTHAM, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 87 (02) :454-459
[3]  
Du Y., 1990, Appl. Anal., V38, P1
[4]  
Guo D. J., 1996, NONLINEAR INTEGRAL E
[5]   Initial value problems for nonlinear second order impulsive integro-differential equations in Banach spaces [J].
Guo, DJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (01) :1-13
[6]   EXTREMAL SOLUTIONS OF NONLINEAR IMPULSIVE INTEGRODIFFERENTIAL EQUATIONS IN BANACH-SPACES [J].
GUO, DJ ;
LIU, XZ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 177 (02) :538-552
[8]  
Lakshmikhantham V., 1989, THEORY IMPULSIVE DIF
[9]   A unique solution of initial value problems for first order impulsive integro-differential equations of mixed type in Banach spaces [J].
Liu, LS ;
Wu, CX ;
Guo, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :369-385
[10]  
Liu X., 1995, COMM APPL NONLINEAR, V2, P65