Do high-velocity clouds form by thermal instability?

被引:105
作者
Binney, James [2 ]
Nipoti, Carlo [1 ]
Fraternali, Filippo [1 ]
机构
[1] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy
[2] Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
关键词
ISM: kinematics and dynamics; galaxies: evolution; galaxies: haloes; galaxies: kinematics and dynamics; SMOOTHED PARTICLE HYDRODYNAMICS; CLUSTER COOLING FLOWS; RESOLUTION X-RAY; GALAXY-FORMATION; HOT GAS; MAGNETOTHERMAL INSTABILITY; MULTIPHASE GAS; STAR-FORMATION; H-ALPHA; ACCRETION;
D O I
10.1111/j.1365-2966.2009.15113.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examine the proposal that the H i 'high-velocity' clouds (HVCs) surrounding the Milky Way and other disc galaxies form by condensation of the hot galactic corona via thermal instability. Under the assumption that the galactic corona is well represented by a non-rotating, stratified atmosphere, we find that for this formation mechanism to work the corona must have an almost perfectly flat entropy profile. In all other cases, the growth of thermal perturbations is suppressed by a combination of buoyancy and thermal conduction. Even if the entropy profile were nearly flat, cold clouds with sizes smaller than 10 kpc could form in the corona of the Milky Way only at radii larger than 100 kpc, in contradiction with the determined distances of the largest HVC complexes. Clouds with sizes of a few kpc can form in the inner halo only in low-mass systems. We conclude that unless even slow rotation qualitatively changes the dynamics of a corona, thermal instability is unlikely to be a viable mechanism for formation of cold clouds around disc galaxies.
引用
收藏
页码:1804 / 1815
页数:12
相关论文
共 54 条
[1]   Fundamental differences between SPH and grid methods [J].
Agertz, Oscar ;
Moore, Ben ;
Stadel, Joachim ;
Potter, Doug ;
Miniati, Francesco ;
Read, Justin ;
Mayer, Lucio ;
Gawryszczak, Artur ;
Kravtosov, Andrey ;
Nordlund, Ake ;
Pearce, Frazer ;
Quilis, Vicent ;
Rudd, Douglas ;
Springel, Volker ;
Stone, James ;
Tasker, Elizabeth ;
Teyssier, Romain ;
Wadsley, James ;
Walder, Rolf .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 380 (03) :963-978
[2]   ON THERMAL-INSTABILITY AND HYDROSTATIC EQUILIBRIUM IN COOLING FLOWS [J].
BALBUS, SA .
ASTROPHYSICAL JOURNAL, 1988, 328 (02) :395-403
[3]   ON MAGNETOTHERMAL INSTABILITY IN CLUSTER COOLING FLOWS [J].
BALBUS, SA .
ASTROPHYSICAL JOURNAL, 1991, 372 (01) :25-30
[4]   THEORY OF LOCAL THERMAL-INSTABILITY IN SPHERICAL SYSTEMS [J].
BALBUS, SA ;
SOKER, N .
ASTROPHYSICAL JOURNAL, 1989, 341 (02) :611-630
[5]  
Begeman K. G., 1987, PhD Thesis
[6]   The accretion origin of the Milky Way's stellar halo [J].
Bell, Eric F. ;
Zucker, Daniel B. ;
Belokurov, Vasily ;
Sharma, Sanjib ;
Johnston, Kathryn V. ;
Bullock, James S. ;
Hogg, David W. ;
Jahnke, Knud ;
De Jong, Jelte T. A. ;
Beers, Timothy C. ;
Evans, N. W. ;
Grebel, Eva K. ;
Ivezic, Zeljko ;
Koposov, Sergey E. ;
Rix, Hans-Walter ;
Schneider, Donald P. ;
Steinmetz, Matthias ;
Zolotov, Adi .
ASTROPHYSICAL JOURNAL, 2008, 680 (01) :295-311
[7]   X-RAY-EMISSION FROM M87 - A PRESSURE CONFINED COOLING ATMOSPHERE SURROUNDING A LOW MASS GALAXY [J].
BINNEY, J ;
COWIE, LL .
ASTROPHYSICAL JOURNAL, 1981, 247 (02) :464-472
[8]   THE GALACTIC FOUNTAIN OF HIGH-VELOCITY CLOUDS [J].
BREGMAN, JN .
ASTROPHYSICAL JOURNAL, 1980, 236 (02) :577-591
[9]  
Brüns C, 2000, ASTRON ASTROPHYS, V357, P120
[10]   Abundance gradients and the formation of the milky way [J].
Chiappini, C ;
Matteucci, F ;
Romano, D .
ASTROPHYSICAL JOURNAL, 2001, 554 (02) :1044-1058