On the stability of a quadratic Jensen type functional equation

被引:28
作者
Lee, YW [1 ]
机构
[1] Taejon Univ, Dept Math, Taejon 300716, South Korea
关键词
Hyers-Ulam-Rassias; quadratic functional equation;
D O I
10.1016/S0022-247X(02)00093-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain the general solution of the quadratic Jensen type functional equation 9f(x + y + z/3) + f(x) + f(y) + f(z) = 4[f(x + y/2) + f(y + z/2) + f(z + x/2)] and prove the stability of this equation in the spirit of Hyers, Ulam, Rassias, and Gavruta. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:590 / 601
页数:12
相关论文
共 50 条
  • [31] Solution and Stability of n-Dimensional Quadratic Functional Equation
    Arunkumar, M.
    Murthy, S.
    Ganapathy, G.
    MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTATION, 2012, 283 : 384 - +
  • [32] ON THE STABILITY OF THE GENERALIZED QUADRATIC SET-VALUED FUNCTIONAL EQUATION
    Chu, Hahng-Yun
    Yoo, Seung Ki
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 20 (06) : 1007 - 1020
  • [33] FIXED POINT METHODS FOR THE STABILITY OF GENERAL QUADRATIC FUNCTIONAL EQUATION
    Gordji, M. Eshaghi
    Khodaei, H.
    Rassias, J. M.
    FIXED POINT THEORY, 2011, 12 (01): : 71 - 82
  • [34] A new quadratic functional equation version and its stability and superstability
    Farhadabadi, Shahrokh
    Lee, Jung Rye
    Park, Choonkil
    Shokri, Javad
    Lee, Jung Rye
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (03) : 544 - 552
  • [35] On Hyers-Ulam-Rassias stability of a quadratic functional equation
    Chang, IS
    Lee, EH
    Kim, HM
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (01): : 87 - 95
  • [36] On the Hyers-Ulam-Rassias stability of a quadratic functional equation
    Jung, SM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 232 (02) : 384 - 393
  • [37] Solution and stability of generalized mixed type additive and quadratic functional equation in non-Archimedean spaces
    M. Eshaghi Gordji
    S. Zolfaghari
    S. Kaboli Gharetapeh
    A. Ebadian
    C. Park
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2012, 58 (1) : 49 - 64
  • [38] A Fixed Point Approach to the Stability of Pexider Quadratic Functional Equation with Involution
    MM Pourpasha
    JM Rassias
    R Saadati
    SM Vaezpour
    Journal of Inequalities and Applications, 2010
  • [39] The Generalized Hyers-Ulam-Rassias Stability of a Quadratic Functional Equation
    Nakmahachalasint, P.
    THAI JOURNAL OF MATHEMATICS, 2006, 4 (02): : 321 - 328
  • [40] Stability and hyperstability of a quadratic functional equation and a characterization of inner product spaces
    El-Fassi, Iz-iddine
    Park, Choonkil
    Kim, Gwang Hui
    DEMONSTRATIO MATHEMATICA, 2018, 51 (01) : 295 - 303