Discrete thermal element modelling of heat conduction in particle systems: Pipe-network model and transient analysis

被引:68
作者
Feng, Y. T. [1 ]
Han, K. [1 ]
Owen, D. R. J. [1 ]
机构
[1] Swansea Univ, Civil & Computat Engn Ctr, Sch Engn, Swansea SA2 8PP, W Glam, Wales
基金
英国工程与自然科学研究理事会;
关键词
Discrete thermal element method; Pipe-network model; Heat conduction; Transient analysis; COUPLED LATTICE BOLTZMANN; TRANSPORT; SPHERES; FLOWS;
D O I
10.1016/j.powtec.2009.03.001
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In our recent work [Y.T. Feng, K. Han, C.F. Li, D.R.J. Owen. Discrete thermal element modelling of heat conduction in particle systems: basic formulations. Journal of Computational Physics. 227: 5072-5089, 2008], a novel numerical methodology, termed the discrete thermal element method (DTEM), is proposed for the modelling of heat conduction in systems involving a large number of circular particles in 2D cases. The method cannot be easily extended to transient analysis, which causes difficulties in combining the DTEM with the conventional discrete element method for modelling thermal/mechanical coupling problems in particle systems. This paper presents a simplified version of the DTEM, termed the pipe-network model, in which each particle is replaced by a simple thermal pipe-network connecting the particle centre with each contact zone associated with the particle. The model essentially neglects the direct heat transfer between the contact zones and thus significantly simplifies the solution procedure of the original DTEM. With this feature, transient heat conduction analysis can now be performed in a straightforward manner. In addition, the entire algorithmic structure of the pipe-network model is compatible with the discrete element method, leading to an effective scheme for simulating thermal-mechanical coupling problems. Numerical experiments are conducted to establish the solution accuracy of the proposed model. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 256
页数:9
相关论文
共 14 条
[1]   Modeling the effective thermal conductivity of random packing of spheres through densification [J].
Argento, C ;
Bouvard, D .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1996, 39 (07) :1343-1350
[2]  
Carrier G.P., 1976, PARTIAL DIFFERENTIAL
[3]   Evaluation of effective thermal conductivity from the structure of a packed bed [J].
Cheng, GJ ;
Yu, AB ;
Zulli, P .
CHEMICAL ENGINEERING SCIENCE, 1999, 54 (19) :4199-4209
[4]   DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES [J].
CUNDALL, PA ;
STRACK, ODL .
GEOTECHNIQUE, 1979, 29 (01) :47-65
[5]   Discrete thermal element modelling of heat conduction in particle systems: Basic formulations [J].
Feng, Y. T. ;
Han, K. ;
Li, C. F. ;
Owen, D. R. J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) :5072-5089
[6]   Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: Computational issues [J].
Feng, Y. T. ;
Han, K. ;
Owen, D. R. J. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 72 (09) :1111-1134
[7]   Modelling of thermal contact resistance within the framework of the thermal lattice Boltzmann method [J].
Han, K. ;
Feng, Y. T. ;
Owen, D. R. J. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2008, 47 (10) :1276-1283
[8]   Coupled lattice Boltzmann and discrete element modelling of fluid-particle interaction problems [J].
Han, K. ;
Feng, Y. T. ;
Owen, D. R. J. .
COMPUTERS & STRUCTURES, 2007, 85 (11-14) :1080-1088
[9]  
Han K, 2007, CMES-COMP MODEL ENG, V18, P87
[10]  
Huang H.C. e., 1994, Finite element analysis for heat transfer: theory and software