Interpolatory √3 Subdivision with Harmonic Interpolation

被引:0
作者
Hardy, Alexandre [1 ]
机构
[1] Univ Johannesburg, Acad Informat Technol, Johannesburg, South Africa
来源
AFRIGRAPH 2007: 5TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, COMPUTER GRAPHICS, VISUALIZATION AND INTERACTION IN AFRICA | 2007年
关键词
Subdivision; interpolation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A variation on the interpolatory subdivision scheme [Labsik and Greiner 2000] is presented based on root 3 subdivision and harmonic interpolation. Harmonic interpolation is generalized to triangle meshes based on a distance representation of the basis functions. The harmonic surface is approximated by limiting the support of the basis functions and the resulting surface is shown to satisfy necessary conditions for continuity. We provide subdivision rules for vertices of valence 3, 4 and 6 that can be applied directly to obtain a smooth surface. Other valences are handled as described in the literature. The resulting algorithm is easily implemented due to root 3 subdivision and the simplicity of the stencils involved.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
[21]   INTERPOLATORY ADAPTIVE SUBDIVISION FOR MESH LOD EDITING [J].
Panozzo, Daniele ;
Puppo, Enrico .
GRAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS, 2009, :70-+
[22]   Smoothness of interpolatory multivariate subdivision in Lie groups [J].
Grohs, Philipp .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (03) :760-772
[23]   Lagrange Interpolatory Subdivision Schemes in Chebyshev Spaces [J].
Mazure, Marie-Laurence .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (04) :1035-1068
[24]   Improved Ternary Subdivision Interpolation Scheme [J].
王华维 ;
秦开怀 .
TsinghuaScienceandTechnology, 2005, (01) :128-132
[25]   Non-uniform interpolatory subdivision via splines [J].
Karciauskas, Kestutis ;
Peters, Joerg .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 240 :31-41
[26]   A kind of interpolatory convexity-preserving subdivision scheme for the generation of smooth curves [J].
Ding, YD .
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN & COMPUTER GRAPHICS, 1999, :936-940
[27]   Shape preserving HC2 interpolatory subdivision [J].
Lettieri, Davide ;
Manni, Carla ;
Pelosi, Francesca ;
Speleers, Hendrik .
BIT NUMERICAL MATHEMATICS, 2015, 55 (03) :751-779
[28]   Polynomial-based non-uniform interpolatory subdivision with features control [J].
Beccari, Carolina ;
Casciola, Giulio ;
Romani, Lucia .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) :4754-4769
[29]   Smoothness equivalence properties of interpolatory Lie group subdivision schemes [J].
Xie, Gang ;
Yu, Thomas P. -Y. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (03) :731-750
[30]   On extraordinary rules of quad-based interpolatory subdivision schemes [J].
Novara, Paola ;
Romani, Lucia .
COMPUTER AIDED GEOMETRIC DESIGN, 2015, 35-36 :225-242