Ideals and congruences in quasi-pseudo-MV algebras

被引:14
作者
Chen, Wenjuan [1 ]
Dudek, Wieslaw A. [2 ]
机构
[1] Univ Jinan, Sch Math Sci, 336 West Rd Nan Xinzhuang, Jinan 250022, Shandong, Peoples R China
[2] Wroclaw Univ Technol, Inst Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
基金
中国国家自然科学基金;
关键词
Congruences; Ideals; Ideal congruences; Normal ideals; Quasi-pseudo-MV algebras; Weak ideals; NONCOMMUTATIVE GENERALIZATION; VARIETIES; LOGIC;
D O I
10.1007/s00500-017-2854-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quasi-pseudo-MV algebras (quasi-pMV algebras, for short) were introduced both as the generalization of quasi-MV algebras and as the generalization of pseudo-MV algebras. In the present paper, we mainly investigate ideals and congruences in a quasi-pMV algebra. We present the properties of ideals of quasi-pMV algebras and investigate some special ideals. Furthermore, we study the normal ideals in detail and characterize the bijective correspondence between normal ideals and ideal congruences. Finally, we introduce weak ideals of a quasi-pMV algebra and show the relation existing between normal weak ideals and congruences.
引用
收藏
页码:3879 / 3889
页数:11
相关论文
共 18 条
[1]  
Bou F, 2008, SOFT COMPUT, V12, P341, DOI 10.1007/s00500-007-0185-8
[2]   The Logic of Quasi-MV Algebras [J].
Bou, Felix ;
Paoli, Francesco ;
Ledda, Antonio ;
Spinks, Matthew ;
Giuntini, Roberto .
JOURNAL OF LOGIC AND COMPUTATION, 2010, 20 (02) :619-643
[3]   Some classes of quasi-pseudo-MV algebras [J].
Chen, Wenjuan ;
Davvaz, Bijan .
LOGIC JOURNAL OF THE IGPL, 2016, 24 (05) :655-672
[4]   QUANTUM COMPUTATIONAL ALGEBRA WITH A NON-COMMUTATIVE GENERALIZATION [J].
Chen, Wenjuan ;
Dudek, Wieslaw A. .
MATHEMATICA SLOVACA, 2016, 66 (01) :19-34
[5]   The representation of square root quasi-pseudo-MV algebras [J].
Chen, Wenjuan ;
Dudek, Wieslaw A. .
SOFT COMPUTING, 2015, 19 (02) :269-282
[6]   On pseudo MV-algebras [J].
A. Dvurečenskij .
Soft Computing, 2001, 5 (5) :347-354
[7]   Pseudo MV-algebras are intervals in l-groups [J].
Dvurecenskij, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 :427-445
[8]   Quantum computational logic with mixed states [J].
Freytes, Hector ;
Domenech, Graciela .
MATHEMATICAL LOGIC QUARTERLY, 2013, 59 (1-2) :27-50
[9]  
Georgescu G., 2001, Multiple-Valued Logics, V6, P193
[10]   Ideals and congruences in effect algebras and QMV-algebras [J].
Giuntini, R ;
Pulmannová, S .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (03) :1567-1592