New Farkas-Type Results for Vector-Valued Functions: A Non-abstract Approach

被引:11
作者
Nguyen Dinh [1 ]
Goberna, Miguel A. [2 ]
Long, Dang H. [3 ,4 ]
Lopez-Cerda, Marco A. [2 ,5 ]
机构
[1] Vietnam Natl Univ HCM, Int Univ, Ho Chi Minh City, Vietnam
[2] Univ Alicante, Dept Math, E-03080 Alicante, Spain
[3] VNUHCM Univ Sci, Dist 5, Ho Chi Minh City, Vietnam
[4] Tien Giang Univ, Tien Giang Town, Vietnam
[5] Federat Univ, CIAO, Ballarat, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Farkas-type results; Vector-valued functions; Qualification conditions;
D O I
10.1007/s10957-018-1352-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper provides new Farkas-type results characterizing the inclusion of a given set, called contained set, into a second given set, called container set, both of them are subsets of some locally convex space, called decision space. The contained and the container sets are described here by means of vector functions from the decision space to other two locally convex spaces which are equipped with the partial ordering associated with given convex cones. These new Farkas lemmas are obtained via the complete characterization of the conic epigraphs of certain conjugate mappings which constitute the core of our approach. In contrast with a previous paper of three of the authors (Dinh et al. in J Optim Theory Appl 173:357-390, 2017), the aimed characterizations of the containment are expressed here in terms of the data.
引用
收藏
页码:4 / 29
页数:26
相关论文
共 27 条
  • [11] FROM THE FARKAS LEMMA TO THE HAHN-BANACH THEOREM
    Dinh, N.
    Goberna, M. A.
    Lopez, M. A.
    Mo, T. H.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (02) : 678 - 701
  • [12] Functional inequalities and theorems of the alternative involving composite functions
    Dinh, N.
    Vallet, G.
    Volle, M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2014, 59 (04) : 837 - 863
  • [13] Farkas' lemma: three decades of generalizations for mathematical optimization
    Dinh, N.
    Jeyakumar, V.
    [J]. TOP, 2014, 22 (01) : 1 - 22
  • [14] FUNCTIONAL INEQUALITIES IN THE ABSENCE OF CONVEXITY AND LOWER SEMICONTINUITY WITH APPLICATIONS TO OPTIMIZATION
    Dinh, N.
    Lopez, M. A.
    Volle, M.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2540 - 2559
  • [15] CONSTRAINT QUALIFICATIONS FOR EXTENDED FARKAS'S LEMMAS AND LAGRANGIAN DUALITIES IN CONVEX INFINITE PROGRAMMING
    Fang, D. H.
    Li, C.
    Ng, K. F.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1311 - 1332
  • [16] Characterizing Efficiency on Infinite-dimensional Commodity Spaces with Ordering Cones Having Possibly Empty Interior
    Flores-Bazan, Fabian
    Flores-Bazan, Fernando
    Laengle, Sigifredo
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 164 (02) : 455 - 478
  • [17] Grad SM, 2015, VECTOR OPTIM, DOI 10.1007/978-3-319-08900-3
  • [18] Vector duality for convex vector optimization problems by means of the quasi-interior of the ordering cone
    Grad, Sorin-Mihai
    Pop, Emilia-Loredana
    [J]. OPTIMIZATION, 2014, 63 (01) : 21 - 37
  • [19] Solution concepts in vector optimization: a fresh look at an old story
    Heyde, Frank
    Loehne, Andreas
    [J]. OPTIMIZATION, 2011, 60 (12) : 1421 - 1440
  • [20] Vector topical functions and Farkas type theorems with applications
    Kermani, V. Momenaei
    Doagooei, A. R.
    [J]. OPTIMIZATION LETTERS, 2015, 9 (02) : 359 - 374