FULLY AUTOMATIC DETECTION OF ANOMALIES ON WHEELS SURFACE USING AN ADAPTIVE ACCURATE MODEL AND HYPOTHESIS TESTING THEORY

被引:0
作者
Tout, Karim [1 ]
Cogranne, Remi [1 ]
Retraint, Florent [1 ]
机构
[1] Univ Technol Troyes, UMR STMR CNRS 6281, LM2S, ICD, Troyes, France
来源
2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2016年
关键词
Anomaly detection; Nondestructive testing; Adaptive image model; Hypothesis testing theory; STATISTICAL DETECTION; IMAGES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the detection of anomalies, or defects, on wheels' surface. The wheel surface is inspected using an imaging system, placed over the conveyor belt. Due to the nature of the wheels, the different elements are analyzed separately. Because many different types of wheels can be manufactured, it is proposed to detect any anomaly using a general and original adaptive linear parametric model. The adaptivity of the proposed model allows us to describe accurately the inspected wheel surface. In addition, the use of a linear parametric model allows the application of hypothesis testing theory to design a test whose statistical performances are analytically known. Numerical results show the accuracy and the relevance of the proposed methodology.
引用
收藏
页码:508 / 512
页数:5
相关论文
共 12 条
  • [1] Statistical detection of defects in radiographic images using an adaptive parametric model
    Cogranne, Remi
    Retraint, Florent
    [J]. SIGNAL PROCESSING, 2014, 96 : 173 - 189
  • [2] An Asymptotically Uniformly Most Powerful Test for LSB Matching Detection
    Cogranne, Remi
    Retraint, Florent
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2013, 8 (03) : 464 - 476
  • [3] Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data
    Foi, Alessandro
    Trimeche, Mejdi
    Katkovnik, Vladimir
    Egiazarian, Karen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (10) : 1737 - 1754
  • [4] Optimal fault detection with nuisance parameters and a general covariance matrix
    Fouladirad, M.
    Freitag, L.
    Nikiforov, I.
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2008, 22 (05) : 431 - 439
  • [5] A SURVEY OF THE HOUGH TRANSFORM
    ILLINGWORTH, J
    KITTLER, J
    [J]. COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1988, 44 (01): : 87 - 116
  • [6] SNAKES - ACTIVE CONTOUR MODELS
    KASS, M
    WITKIN, A
    TERZOPOULOS, D
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1987, 1 (04) : 321 - 331
  • [7] Computer-vision-based fabric defect detection: A survey
    Kumar, Ajay
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (01) : 348 - 363
  • [8] Mery D., 2002, J BRIT I NONDESTRUCT, V44, P428
  • [9] Content-Adaptive Steganography by Minimizing Statistical Detectability
    Sedighi, Vahid
    Cogranne, Remi
    Fridrich, Jessica
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2016, 11 (02) : 221 - 234
  • [10] Real-time vision-based system for textile fabric inspection
    Stojanovic, R
    Mitropulos, P
    Koulamas, C
    Karayiannis, Y
    Koubias, S
    Papadopoulos, G
    [J]. REAL-TIME IMAGING, 2001, 7 (06) : 507 - 518