Generalized Ornstein-Uhlenbeck processes

被引:29
|
作者
Bezuglyy, V. [1 ]
Mehlig, B.
Wilkinson, M.
Nakamura, K.
Arvedson, E.
机构
[1] Gothenburg Univ, Dept Phys, S-41296 Gothenburg, Sweden
[2] Open Univ, Fac Math & Comp, Milton Keynes MK7 6AA, Bucks, England
[3] Osaka City Univ, Dept Appl Phys, Osaka 5588585, Japan
关键词
STOCHASTIC ACCELERATION; QUANTUM SUPERDIFFUSION; TURBULENCE; TRANSPORT;
D O I
10.1063/1.2206878
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We solve a physically significant extension of a classic problem in the theory of diffusion, namely the Ornstein-Uhlenbeck process [Ornstein and Uhlenbeck, Phys. Rev. 36, 823 (1930)]. Our generalized Ornstein-Uhlenbeck systems include a force which depends upon the position of the particle, as well as upon time. They exhibit anomalous diffusion at short times, and non-Maxwellian velocity distributions in equilibrium. Two approaches are used. Some statistics are obtained from a closed-form expression for the propagator of the Fokker-Planck equation for the case where the particle is initially at rest. In the general case we use spectral decomposition of a Fokker-Planck equation, employing nonlinear creation and annihilation operators to generate the spectrum which consists of two staggered ladders. (c) 2006 American Institute of Physics.
引用
收藏
页数:21
相关论文
共 14 条
  • [1] Simulation of multifractal products of Ornstein-Uhlenbeck type processes
    Anh, Vo V.
    Leonenko, Nikolai N.
    Shieh, Narn-Rueih
    Taufer, Emanuele
    NONLINEARITY, 2010, 23 (04) : 823 - 843
  • [2] An active fractional Ornstein-Uhlenbeck particle: diffusion and dissipation
    Rangaig, Norodin A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (07):
  • [3] Analyzing a stochastic process driven by Ornstein-Uhlenbeck noise
    Lehle, B.
    Peinke, J.
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [4] Electronic dynamics in chains with Ornstein-Uhlenbeck correlated disorder
    Soares, J. L. S.
    dos Santos, R. D.
    Sousa, F. J. S.
    Sales, M. O.
    Moura, F. A. B. F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (12):
  • [5] Conducting properties of classical transmission lines with Ornstein-Uhlenbeck type disorder
    Lazo, E.
    Diez, E.
    PHYSICS LETTERS A, 2011, 375 (21) : 2122 - 2128
  • [6] Parameter estimation of the fractional Ornstein-Uhlenbeck process based on quadratic variation
    Janczura, Joanna
    Magdziarz, Marcin
    Metzler, Ralf
    CHAOS, 2023, 33 (10)
  • [7] Ornstein-Uhlenbeck Process on Three-Dimensional Comb under Stochastic Resetting
    Trajanovski, Pece
    Jolakoski, Petar
    Kocarev, Ljupco
    Sandev, Trifce
    MATHEMATICS, 2023, 11 (16)
  • [8] The defect technique for partially absorbing and reflecting boundaries: Application to the Ornstein-Uhlenbeck process
    Kay, Toby
    McKetterick, Thomas John
    Giuggioli, Luca
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (07N08):
  • [9] Generalized continuous time random walks and Hermite processes
    Chen, Zhenlong
    Xu, Lin
    Zhu, Dongjin
    STATISTICS & PROBABILITY LETTERS, 2015, 99 : 44 - 53
  • [10] Generalized binomial multiplicative cascade processes and asymmetrical multifractal distributions
    Cheng, Q.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2014, 21 (02) : 477 - 487