ON THE SET OF METRICS WITHOUT LOCAL LIMITING CARLEMAN WEIGHTS

被引:6
作者
Angulo-Ardoy, Pablo [1 ]
机构
[1] Univ Politecn Madrid, ETS Ingenieros Navales, Avd Arco de la Victoria N4,Ciudad Univ, E-28040 Madrid, Spain
关键词
Limiting Carleman weight; Calderon problem; transversality; Riemannian geometry; conformal geometry;
D O I
10.3934/ipi.2017003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper [1] it is shown that the set of Riemannian metrics which do not admit global limiting Carleman weights is open and dense, by studying the conformally invariant Weyl and Cotton tensors. In the paper [7] it is shown that the set of Riemannian metrics which do not admit local limiting Carleman weights at any point is residual, showing that it contains the set of metrics for which there are no local conformal diffeomorphisms between any distinct open subsets. This paper is a continuation of [1] in order to prove that the set of Riemannian metrics which do not admit local limiting Carleman weights at any point is open and dense.
引用
收藏
页码:47 / 64
页数:18
相关论文
共 8 条
[1]  
Angulo-Ardoy P., ARXIV160304201
[2]   OBSTRUCTIONS TO THE EXISTENCE OF LIMITING CARLEMAN WEIGHTS [J].
Angulo-Ardoy, Pablo ;
Faraco, Daniel ;
Guijarro, Luis ;
Ruiz, Alberto .
ANALYSIS & PDE, 2016, 9 (03) :575-595
[3]  
[Anonymous], 1976, DIFFERENTIAL TOPOLOG
[4]  
Bochnak J., 1998, Ergeb. Math. Grenzgeb.
[5]   Limiting Carleman weights and anisotropic inverse problems [J].
Ferreira, David Dos Santos ;
Kenig, Carlos E. ;
Salo, Mikko ;
Uhlmann, Gunther .
INVENTIONES MATHEMATICAE, 2009, 178 (01) :119-171
[6]   Non-smooth points set of fibres of a semialgebraic mapping [J].
Koike, Satoshi ;
Shiota, Masahiro .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (04) :953-969
[7]   NOWHERE CONFORMALLY HOMOGENEOUS MANIFOLDS AND LIMITING CARLEMAN WEIGHTS [J].
Liimatainen, Tony ;
Salo, Mikko .
INVERSE PROBLEMS AND IMAGING, 2012, 6 (03) :523-530
[8]  
Wall, 1975, LECT NOTES MATH, V468, P332