Mean curvature flow on graphs for image and manifold restoration and enhancement

被引:16
作者
El Chakik, Abdallah [1 ]
Elmoataz, Abdderahim [1 ]
Desquesnes, Xavier [1 ]
机构
[1] Univ Caen Basse Normandie, ENSICAEN, GREYC UMR CNRS 6972, F-14050 Caen, France
关键词
Mean curvature; Partial difference equations on graphs; Image processing; Data restoration; DIFFUSION; EQUATIONS;
D O I
10.1016/j.sigpro.2014.04.029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose an adaptation and a transcription of the mean curvature level set equation on the general discrete domain, a weighted graph. For this, we introduce perimeters on graphs using difference operators and define the curvature as the first variation of these perimeters. Then we propose a morphological scheme that unifies both local and nonlocal notions of mean curvature on Euclidean domains. Furthermore, this scheme allows to extend the mean curvature applications to process images, manifolds and data which can be represented by graphs. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:449 / 463
页数:15
相关论文
共 23 条
[1]   AXIOMS AND FUNDAMENTAL EQUATIONS OF IMAGE-PROCESSING [J].
ALVAREZ, L ;
GUICHARD, F ;
LIONS, PL ;
MOREL, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (03) :199-257
[2]  
[Anonymous], ANAL COMPUT METHODS
[3]  
[Anonymous], 2010, Discrete Calculus: Applied Analysis on Graphs for Computational Science, Cover1-Cover1
[4]  
[Anonymous], 1999, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
[5]  
Bensoussan A, 2005, J CONVEX ANAL, V12, P13
[6]   Nonlocal Minimal Surfaces [J].
Caffarelli, L. ;
Roquejoffre, J. -M. ;
Savin, O. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (09) :1111-1144
[7]   Convergence of Nonlocal Threshold Dynamics Approximations to Front Propagation [J].
Caffarelli, Luis A. ;
Souganidis, Panagiotis E. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) :1-23
[8]   A MORPHOLOGICAL SCHEME FOR MEAN-CURVATURE MOTION AND APPLICATIONS TO ANISOTROPIC DIFFUSION AND MOTION OF LEVEL SETS [J].
CATTE, F ;
DIBOS, F ;
KOEPFLER, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1895-1909
[9]  
Chakik A. EL, 2012, LECT NOTES COMPUTER, V7727, P309
[10]   Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps [J].
Coifman, RR ;
Lafon, S ;
Lee, AB ;
Maggioni, M ;
Nadler, B ;
Warner, F ;
Zucker, SW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (21) :7426-7431