Pixel-Based Classification of Hyperspectral Images Using Convolutional Neural Networks

被引:4
|
作者
Hussain, Syed Aamer [1 ]
Tahir, Ali [1 ]
Khan, Junaid Aziz [1 ]
Salman, Ahmad [2 ]
机构
[1] Natl Univ Sci & Technol, Inst Geog Informat Syst, Sect H-12, Islamabad 44000, Pakistan
[2] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Sect H-12, Islamabad 44000, Pakistan
来源
PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE | 2019年 / 87卷 / 1-2期
关键词
Hyperspectral data; Machine learning; Convolutional neural networks; RANDOM FOREST; ARCHITECTURES; FRAMEWORK; TEXT;
D O I
10.1007/s41064-019-00066-z
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The recent progress in geographical information systems, remote sensing (RS) and data analytics enables us to acquire and process large amount of Earth observation data. Convolutional neural networks (CNN) are being used frequently in classification of multi-dimensional images with high accuracy. In this paper, we test CNNs for the classification of hyperspectral RS data. Our proposed CNN is a multi-layered neural network architecture, which is tailored to classify objects based on pixel-wise spatial information using spectral bands of hyperspectral imagery (HSI). We use benchmark satellite imagery in four different HSI datasets for classification using the proposed architecture. Our results are compared with support vector machine (SVM) and extreme learning machine (ELM) algorithms, which are frequently used techniques of machine learning in RS data classification. Moreover, we also provide a comparison with the state-of-the-art CNN approaches, which have been used for HSI classification. Our results show improvements of up to 6% on average over SVM and ELM while up to 4% improvement is observed in comparison with two recently proposed CNN architectures for HSI classification accuracy. On the other hand, the processing time of our proposed CNN is also significantly lower.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [21] Mineral Classification using Convolutional Neural Networks and SWIR Hyperspectral Imaging
    Cifuentes, Jose I.
    Arias, Luis E.
    Pirard, Eric
    Castillo, Fernando
    AI AND OPTICAL DATA SCIENCES V, 2024, 12903
  • [22] An Evaluation of Convolutional Neural Networks for Lithological Mapping Based on Hyperspectral Images
    Wang, Ziye
    Zuo, Renguang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 6414 - 6425
  • [23] Defect classification in shearography images using convolutional neural networks
    Frohlich, Herberth Birck
    Fantin, Analucia Vieira
    Fonseca de Oliveira, Bernardo Cassimiro
    Willemann, Daniel Pedro
    Iervolino, Lucas Arrigoni
    Benedet, Mauro Eduardo
    Goncalves, Armando Albertazzi, Jr.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [24] Classification of Images as Photographs or Paintings by Using Convolutional Neural Networks
    Miguel Lopez-Rubio, Jose
    Molina-Cabello, Miguel A.
    Ramos-Jimenez, Gonzalo
    Lopez-Rubio, Ezequiel
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 432 - 442
  • [25] Classification of Human Metaspread Images Using Convolutional Neural Networks
    Arora, Tanvi
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2021, 21 (03)
  • [26] Food Classification from Images Using Convolutional Neural Networks
    Attokaren, David J.
    Fernandes, Ian G.
    Sriram, A.
    Murthy, Y. V. Srinivasa
    Koolagudi, Shashidhar G.
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 2801 - 2806
  • [27] Improved Convolutional Neural Networks for Hyperspectral Image Classification
    Kalita, Shashanka
    Biswas, Mantosh
    RECENT DEVELOPMENTS IN MACHINE LEARNING AND DATA ANALYTICS, 2019, 740 : 397 - 410
  • [28] Classification of fundus autofluorescence images based on macular function in retinitis pigmentosa using convolutional neural networks
    Kominami, Taro
    Ueno, Shinji
    Ota, Junya
    Inooka, Taiga
    Oda, Masahiro
    Mori, Kensaku
    Nishiguchi, Koji M.
    JAPANESE JOURNAL OF OPHTHALMOLOGY, 2025, : 236 - 244
  • [29] Semi-Active Convolutional Neural Networks for Hyperspectral Image Classification
    Yao, Jing
    Cao, Xiangyong
    Hong, Danfeng
    Wu, Xin
    Meng, Deyu
    Chanussot, Jocelyn
    Xu, Zongben
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [30] Classification for Dermoscopy Images Using Convolutional Neural Networks Based on Region Average Pooling
    Yang, Jiawen
    Xie, Fengying
    Fan, Haidi
    Jiang, Zhiguo
    Liu, Jie
    IEEE ACCESS, 2018, 6 : 65130 - 65138