From Si wafers to cheap and efficient Si electrodes for Li-ion batteries

被引:31
|
作者
Gauthier, Magali [1 ,2 ,3 ]
Reyter, David [1 ]
Mazouzi, Driss [2 ,3 ]
Moreau, Philippe [2 ,3 ]
Guyomard, Dominique [2 ,3 ]
Lestriez, Bernard [2 ,3 ]
Roue, Lionel [1 ]
机构
[1] INRS Energie, Mat Telecommun, Varennes, PQ J3X 1S2, Canada
[2] Univ Nantes, CNRS, Inst Mat Jean Rouxel IMN, F-44322 Nantes 03, France
[3] Reseau Stockage Elect Energie RS2E, FR CNRS 3459, Paris, France
基金
加拿大自然科学与工程研究理事会;
关键词
Li-ion batteries; Silicon electrodes; Si wafer; Ball milling; NEGATIVE ELECTRODE; HIGH-CAPACITY; SOLID-ELECTROLYTE; SILICON POWDER; CYCLE LIFE; ANODES; INTERPHASE; CELLS;
D O I
10.1016/j.jpowsour.2014.01.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-energy ball milling is used to recycle Si wafers to produce Si powders for negative electrodes of Li-ion batteries. The resulting Si powder consists in micrometric Si agglomerates made of cold-welded submicrometric nanocrystalline Si particles. Silicon-based composite electrodes prepared with ball-milled Si wafer can achieve more than 900 cycles with a capacity of 1200 mAh g(-1), of Si (880 mAh g(-1) of electrode) and a coulombic efficiency higher than 99%. This excellent electrochemical performance lies in the use of nanostructured Si produced by ball milling, the electrode formulation in a pH 3 buffer solution with CMC as binder and the use of FEC/VC additives in the electrolyte. This work opens the way to an economically attractive recycling of Si wastes. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:32 / 36
页数:5
相关论文
共 50 条
  • [1] Si-alloy negative electrodes for Li-ion batteries
    Obrovac, M. N.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 9 : 8 - 17
  • [2] Li-Metal-Free Prelithiation of Si-Based Negative Electrodes for Full Li-Ion Batteries
    Zhou, Haitao
    Wang, Xuehang
    Chen, De
    CHEMSUSCHEM, 2015, 8 (16) : 2737 - 2744
  • [3] Interphase chemistry of Si electrodes used as anodes in Li-ion batteries
    Pereira-Nabais, Catarina
    Swiatowska, Jolanta
    Chagnes, Alexandre
    Ozanam, Francois
    Gohier, Aurelien
    Tran-Van, Pierre
    Cojocaru, Costel-Sorin
    Cassir, Michel
    Marcus, Philippe
    APPLIED SURFACE SCIENCE, 2013, 266 : 5 - 16
  • [4] Doped-Si-Ag composite electrodes for Li-ion batteries
    Talla, Girikrishna
    Guduru, Ramesh K.
    Li, Ben Q.
    Mohanty, Pravansu S.
    SOLID STATE IONICS, 2015, 269 : 8 - 13
  • [5] An optimized electrically conductive Si-Fe matrix to boost the performance of Si electrodes in Li-ion batteries
    Cardenas, A. Avila
    Beaudhuin, M.
    Nguyen, L. H. B.
    Herlin-Boime, N.
    Haon, C.
    Monconduit, L.
    ENERGY STORAGE MATERIALS, 2025, 75
  • [6] Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries
    Bridel, J. -S.
    Azais, T.
    Morcrette, M.
    Tarascon, J. -M.
    Larcher, D.
    CHEMISTRY OF MATERIALS, 2010, 22 (03) : 1229 - 1241
  • [7] Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries
    Jung, Roland
    Metzger, Michael
    Haering, Dominik
    Solchenbach, Sophie
    Marino, Cyril
    Tsiouvaras, Nikolaos
    Stinner, Christoph
    Gasteiger, Hubert A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (08) : A1705 - A1716
  • [8] Si-Based Anode Materials for Li-Ion Batteries: A Mini Review
    Ma, Delong
    Cao, Zhanyi
    Hu, Anming
    NANO-MICRO LETTERS, 2014, 6 (04) : 347 - 358
  • [9] Solid-Electrolyte Interface Formation on Si Nanowires in Li-Ion Batteries: The Impact of Electrolyte Additives
    Sarra, Angelo
    Brutti, Sergio
    Palumbo, Oriele
    Capitani, Francesco
    Borondics, Ferenc
    Appetecchi, Giovanni Battista
    Carboni, Nicholas
    Ahad, Syed Abdul
    Geaney, Hugh
    Ryan, Kevin
    Paolone, Annalisa
    BATTERIES-BASEL, 2023, 9 (03):
  • [10] From solid waste to a high-performance Li3.25Si anode: towards high initial Coulombic efficiency Li-Si alloy electrodes for Li-ion batteries
    He, Yayue
    Zhang, Youjia
    Li, Zhenxi
    Cao, Peng-Fei
    Yang, Huabin
    Gao, Shilun
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (31) : 15016 - 15023