Optically Active Semiconductor Nanosprings for Tunable Chiral Nanophotonics

被引:16
作者
Baimuratov, Anvar S. [1 ]
Pereziabova, Tatiana P. [1 ]
Leonov, Mikhail Yu. [1 ]
Zhu, Weiren [2 ]
Baranov, Alexander V. [1 ]
Fedorov, Anatoly V. [1 ]
Gun'ko, Yurii K. [3 ,4 ]
Rukhlenko, Ivan D. [1 ]
机构
[1] ITMO Univ, Informat Opt Technol Ctr, St Petersburg 197101, Russia
[2] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
[3] Trinity Coll Dublin, Sch Chem, Dublin 2, Ireland
[4] Trinity Coll Dublin, CRANN Inst, Dublin 2, Ireland
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
absorption; circular dichroism; optomechanics; helical symmetry; tunable optical properties; CIRCULAR-DICHROISM; ELECTRIC-FIELD; QUANTUM DOTS; HELICES; SINGLE; SHAPE;
D O I
10.1021/acsnano.8b02867
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The search for the optimal geometry of optically active semiconductor nanostructures is making steady progress and has far-reaching benefits. Yet the helical springlike shape, which is very likely to provide a highly dissymmetric optical response, remains somewhat understudied theoretically. Here we comprehensively analyze the optical activity of semiconductor nanosprings using a fully quantum-mechanical model of their electronic subsystem and taking into account the anisotropy of their interaction with light. We show that the circular dichroism of semiconductor nanosprings can exceed that of ordinary semiconductor nanocrystals by a factor of 100 and be comparable to the circular dichroism of metallic nanosprings. It is also demonstrated that nanosprings can feature a total dissymmetry of optical response for certain ratios between their length and coil height. The magnitude and sign of the circular dichroism signal can be controlled by stretching or compressing the nanosprings, which makes them a promising material base for optomechanical sensors, polarization controllers, and other types of optically active nanophotonic devices.
引用
收藏
页码:6203 / 6209
页数:7
相关论文
共 48 条
[21]   Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene [J].
Jin, W ;
Fukushima, T ;
Niki, M ;
Kosaka, A ;
Ishii, N ;
Aida, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (31) :10801-10806
[22]   Geometric theory of defects [J].
Katanaev, MO .
PHYSICS-USPEKHI, 2005, 48 (07) :675-701
[23]   Nanosprings harvest light more efficiently [J].
Khudiyev, Tural ;
Bayindir, Mehmet .
APPLIED OPTICS, 2015, 54 (26) :8018-8023
[24]   Semiconductor nanohelix in electric field: A superlattice of the new type [J].
Kibis, O. V. ;
Portnoi, M. E. .
TECHNICAL PHYSICS LETTERS, 2007, 33 (10) :878-880
[25]   Electronic Properties and Persistent Spin Currents of Nanospring under Static Magnetic Field [J].
Kosugi, Taichi .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (03)
[26]   Chiral Inorganic Nanostructures [J].
Ma, Wei ;
Xu, Liguang ;
de Moura, Andre F. ;
Wu, Xiaoling ;
Kuang, Hua ;
Xu, Chuanlai ;
Kotov, Nicholas A. .
CHEMICAL REVIEWS, 2017, 117 (12) :8041-8093
[27]  
Mark AG, 2013, NAT MATER, V12, P802, DOI [10.1038/NMAT3685, 10.1038/nmat3685]
[28]   Nanospring formation - unexpected catalyst mediated growth [J].
McIlroy, DN ;
Alkhateeb, A ;
Zhang, D ;
Aston, DE ;
Marcy, AC ;
Norton, MG .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (12) :R415-R440
[29]   The chiral nano-world: chiroptically active quantum nanostructures [J].
Milton, Finn Purcell ;
Govan, Joseph ;
Mukhina, Maria V. ;
Gun'ko, Yurii K. .
NANOSCALE HORIZONS, 2016, 1 (01) :14-26
[30]   Circular Dichroism of Electric-Field-Oriented CdSe/CdS Quantum Dots-in-Rods [J].
Mukhina, Maria V. ;
Baimuratov, Anvar S. ;
Rukhlenko, Ivan D. ;
Maslov, Vladimir G. ;
Milton, Finn Purcell ;
Gun'ko, Yurii K. ;
Baranov, Alexander V. ;
Fedorov, Anatoly V. .
ACS NANO, 2016, 10 (09) :8904-8909