Thermal aging stability of infiltrated solid oxide fuel cell electrode microstructures: A three-dimensional kinetic Monte Carlo simulation

被引:11
作者
Zhang, Yanxiang [1 ,2 ]
Ni, Meng [3 ]
Yan, Mufu [1 ]
Chen, Fanglin [2 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Natl Key Lab Precis Hot Proc Met, Harbin 150001, Peoples R China
[2] Univ S Carolina, Dept Mech Engn, Columbia, SC 29205 USA
[3] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Bldg Energy Res Grp, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Fuel cells; Infiltration; Nanostructure; Stability; Coarsening; Kinetic Monte Carlo; NANO-STRUCTURED ELECTRODES; HIGH-PERFORMANCE; MOLECULAR-DYNAMICS; SINTERING KINETICS; CATHODE; ANODES; NANOSCALE; NI; RECONSTRUCTION; DIFFUSION;
D O I
10.1016/j.jpowsour.2015.09.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanostructured electrodes are widely used for low temperature solid oxide fuel cells, due to their remarkably high activity. However, the industrial applications of the infiltrated electrodes are hindered by the durability issues, such as the microstructure stability against thermal aging. Few strategies are available to overcome this challenge due to the limited knowledge about the coarsening kinetics of the infiltrated electrodes and how the potentially important factors affect the stability. In this work, the generic thermal aging kinetics of the three-dimensional microstructures of the infiltrate electrodes is investigated by a kinetic Monte Carlo simulation model considering surface diffusion mechanism. Effects of temperature, infiltration loading, wettability, and electrode configuration are studied and the key geometric parameters are, calculated such as the infiltrate particle size, the total and percolated quantities of three-phase boundary length and infiltrate surface area, and the tortuosity factor of infiltrate network. Through parametric study, several strategies to improve the thermal aging stability are proposed. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:578 / 586
页数:9
相关论文
共 35 条
[1]   Electrode kinetics of porous mixed-conducting oxygen electrodes [J].
Adler, SB ;
Lane, JA ;
Steele, BCH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) :3554-3564
[2]   Factors governing oxygen reduction in solid oxide fuel cell cathodes [J].
Adler, SB .
CHEMICAL REVIEWS, 2004, 104 (10) :4791-4843
[3]   Simulation of coarsening in three-phase solid oxide fuel cell anodes [J].
Chen, Hsun-Yi ;
Yu, Hui-Chia ;
Cronin, J. Scott ;
Wilson, James R. ;
Barnett, Scott A. ;
Thornton, Katsuyo .
JOURNAL OF POWER SOURCES, 2011, 196 (03) :1333-1337
[4]   Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network [J].
Chen, Yu ;
Lin, Ye ;
Zhang, Yanxiang ;
Wang, Siwei ;
Su, Dong ;
Yang, Zhibin ;
Han, Minfang ;
Chen, Fanglin .
NANO ENERGY, 2014, 8 :25-33
[5]   Enhancing SOFC cathode performance by surface modification through infiltration [J].
Ding, Dong ;
Li, Xiaxi ;
Lai, Samson Yuxiu ;
Gerdes, Kirk ;
Liu, Meilin .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) :552-575
[6]   Alternative anode materials for solid oxide fuel cells [J].
Goodenough, John B. ;
Huang, Yun-Hui .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :1-10
[7]   Nondestructive Nanoscale 3D Elemental Mapping and Analysis of a Solid Oxide Fuel Cell Anode [J].
Grew, Kyle N. ;
Chu, Yong S. ;
Yi, Jaemock ;
Peracchio, Aldo A. ;
Izzo, John R., Jr. ;
Hwu, Yeukuang ;
De Carlo, Francesco ;
Chiu, Wilson K. S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (06) :B783-B792
[8]   Nondestructive reconstruction and analysis of SOFC anodes using x-ray computed tomography at sub-50 nm resolution [J].
Izzo, John R., Jr. ;
Joshi, Abhijit S. ;
Grew, Kyle N. ;
Chiu, Wilson K. S. ;
Tkachuk, Andrei ;
Wang, Siew H. ;
Yun, Wenbing .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (05) :B504-B508
[9]   Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges [J].
Jiang, San Ping .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (01) :449-470
[10]   A review of wet impregnation - An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells [J].
Jiang, SP .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 418 (1-2) :199-210