Nonequilibrium Bethe-Salpeter equation for transient photoabsorption spectroscopy

被引:42
作者
Perfetto, E. [1 ,2 ,3 ]
Sangalli, D. [4 ]
Marini, A. [4 ]
Stefanucci, G. [1 ,2 ,3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy
[2] European Theoret Spect Facil, Louvain, Belgium
[3] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
[4] CNR, Ist Struttura Mat, I-00016 Montelibretti, Italy
基金
欧盟地平线“2020”;
关键词
DENSITY-FUNCTIONAL THEORY; PUMP-PROBE SPECTROSCOPY; RANGE CHARGE-TRANSFER; ABSORPTION; EXCITATIONS; SPECTRA;
D O I
10.1103/PhysRevB.92.205304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we propose an accurate first-principles approach to calculate the transient photoabsorption spectrum measured in pump-and-probe experiments. We formulate a condition of adiabaticity and thoroughly analyze the simplifications brought about by the fulfillment of this condition in the nonequilibrium Green's function (NEGF) framework. Starting from the Kadanoff-Baym equations, we derive a nonequilibrium Bethe-Salpeter equation (BSE) for the response function that can be implemented in most of the already existing ab initio codes. In addition, the adiabatic approximation is benchmarked against full NEGF simulations in simple model Hamiltonians, even under extreme, nonadiabatic conditions in which it is expected to fail. We find that the nonequilibrium BSE is very robust and captures important spectral features in a wide range of experimental configurations.
引用
收藏
页数:13
相关论文
共 50 条
[31]   Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies [J].
Li, Jiachen ;
Jin, Ye ;
Su, Neil Qiang ;
Yang, Weitao .
JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (15)
[32]   Solving the Bethe-Salpeter equation on a subspace: Approximations and consequences for low-dimensional materials [J].
Qiu, Diana Y. ;
da Jornada, Felipe H. ;
Louie, Steven G. .
PHYSICAL REVIEW B, 2021, 103 (04)
[33]   Energy-specific Bethe-Salpeter equation implementation for efficient optical spectrum calculations [J].
Hillenbrand, Christopher ;
Li, Jiachen ;
Zhu, Tianyu .
JOURNAL OF CHEMICAL PHYSICS, 2025, 162 (17)
[34]   Strong decays of heavy baryons in the Bethe-Salpeter formalism [J].
Guo, Xin-Heng ;
Wei, Ke-Wei ;
Wu, Xing-Hua .
PHYSICAL REVIEW D, 2008, 77 (03)
[35]   Quantitative characterization of exciton from GW plus Bethe-Salpeter calculation [J].
Hirose, Daichi ;
Noguchi, Yoshifumi ;
Sugino, Osamu .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (04)
[36]   Time-dependent stochastic Bethe-Salpeter approach [J].
Rabani, Eran ;
Baer, Roi ;
Neuhauser, Daniel .
PHYSICAL REVIEW B, 2015, 91 (23)
[37]   DOUBLING ALGORITHM FOR THE DISCRETIZED BETHE-SALPETER EIGENVALUE PROBLEM [J].
Guo, Zhen-Chen ;
Chu, Eric King-Wah ;
Lin, Wen-Wei .
MATHEMATICS OF COMPUTATION, 2019, 88 (319) :2325-2350
[38]   Combining Renormalized Singles GW Methods with the Bethe-Salpeter Equation for Accurate Neutral Excitation Energies [J].
Yang, Weitao ;
Li, Jiachen ;
Golze, Dorothea .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (11) :6637-6645
[39]   Speeding up the solution of the Bethe-Salpeter equation by a double-grid method and Wannier interpolation [J].
Kammerlander, David ;
Botti, Silvana ;
Marques, Miguel A. L. ;
Marini, Andrea ;
Attaccalite, Claudio .
PHYSICAL REVIEW B, 2012, 86 (12)
[40]   Optical properties of Cu-chalcogenide photovoltaic absorbers from self-consistent GW and the Bethe-Salpeter equation [J].
Koerbel, Sabine ;
Kammerlander, David ;
Sarmiento-Perez, Rafael ;
Attaccalite, Claudio ;
Marques, Miguel A. L. ;
Botti, Silvana .
PHYSICAL REVIEW B, 2015, 91 (07)