Nonequilibrium Bethe-Salpeter equation for transient photoabsorption spectroscopy

被引:40
作者
Perfetto, E. [1 ,2 ,3 ]
Sangalli, D. [4 ]
Marini, A. [4 ]
Stefanucci, G. [1 ,2 ,3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy
[2] European Theoret Spect Facil, Louvain, Belgium
[3] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
[4] CNR, Ist Struttura Mat, I-00016 Montelibretti, Italy
基金
欧盟地平线“2020”;
关键词
DENSITY-FUNCTIONAL THEORY; PUMP-PROBE SPECTROSCOPY; RANGE CHARGE-TRANSFER; ABSORPTION; EXCITATIONS; SPECTRA;
D O I
10.1103/PhysRevB.92.205304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we propose an accurate first-principles approach to calculate the transient photoabsorption spectrum measured in pump-and-probe experiments. We formulate a condition of adiabaticity and thoroughly analyze the simplifications brought about by the fulfillment of this condition in the nonequilibrium Green's function (NEGF) framework. Starting from the Kadanoff-Baym equations, we derive a nonequilibrium Bethe-Salpeter equation (BSE) for the response function that can be implemented in most of the already existing ab initio codes. In addition, the adiabatic approximation is benchmarked against full NEGF simulations in simple model Hamiltonians, even under extreme, nonadiabatic conditions in which it is expected to fail. We find that the nonequilibrium BSE is very robust and captures important spectral features in a wide range of experimental configurations.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] GW(Γ) method without the Bethe-Salpeter equation for photoabsorption energies of spin-polarized systems
    Isobe, Tomoharu
    Kuwahara, Riichi
    Ohno, Kaoru
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [2] Implementation of the Bethe-Salpeter Equation in the TURBOMOLE Program
    Krause, Katharina
    Klopper, Wim
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2017, 38 (06) : 383 - 388
  • [3] Second-order response Bethe-Salpeter equation
    Huebener, Hannes
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [4] The Bethe-Salpeter Equation Formalism: From Physics to Chemistry
    Blase, Xavier
    Duchemin, Ivan
    Jacquemin, Denis
    Loos, Pierre-Francois
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (17): : 7371 - 7382
  • [5] Bethe-Salpeter equation spectra for very large systems
    Bradbury, Nadine C.
    Nguyen, Minh
    Caram, Justin R.
    Neuhauser, Daniel
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (03)
  • [6] Solving the Bethe-Salpeter equation on massively parallel architectures
    Zhang, Xiao
    Achilles, Sebastian
    Winkelmann, Jan
    Haas, Roland
    Schleife, Andre
    Di Napoli, Edoardo
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 267
  • [7] A Guide to Molecular Properties from the Bethe-Salpeter Equation
    Holzer, Christof
    Franzke, Yannick J.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (16): : 3980 - 3990
  • [8] Improved Dielectric Response of Solids: Combining the Bethe-Salpeter Equation with the Random Phase Approximation
    Sondersted, Amalie H.
    Kuisma, Mikael
    Svaneborg, Jakob K.
    Svendsen, Mark Kamper
    Thygesen, Kristian S.
    PHYSICAL REVIEW LETTERS, 2024, 133 (02)
  • [9] Computation of the expectation value of the spin operator for the spin-flip Bethe-Salpeter equation
    Barker, B. A.
    Seshappan, A.
    Strubbe, D. A.
    ELECTRONIC STRUCTURE, 2024, 6 (02):
  • [10] Solving the Bethe-Salpeter equation in real frequencies at finite temperature
    Tupitsyn, I. S.
    V. Prokof'ev, N.
    PHYSICAL REVIEW B, 2024, 109 (04)