PROTEIN SECONDARY STRUCTURE PREDICTION USING KNOWLEDGE-BASED POTENTIALS

被引:0
作者
Saraswathi, Saras [1 ]
Jernigan, Robert L. [1 ]
Kloczkowski, Andrzej [1 ]
Kolinski, Andrzej [2 ]
机构
[1] LH Baker Ctr Bioinformat & Biol Stat, Dept Biochem Biophys & Mol Biol, 112 Off & Lab Bldg, Ames, IA 50011 USA
[2] Warsaw Univ, Lab Theory Biopolymers, Fac Chem, PL-02093 Warsaw, Poland
来源
ICFC 2010/ ICNC 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION AND INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION | 2010年
基金
美国国家卫生研究院;
关键词
Protein secondary structure prediction; Neural networks; Extreme learning machine; Particle swarm optimization; SUPPORT VECTOR MACHINES; EVOLUTIONARY INFORMATION; ACCURACY; SEQUENCE; ALIGNMENT; SERVER;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel method is proposed for predicting protein secondary structure using data derived from knowledge based potentials and Neural Networks. Potential energies for amino acid sequences in proteins are calculated using protein structures. An Extreme Learning Machine classifier (ELM-PSO) is used to model and predict protein secondary structures. Classifier performance is maximized using the Particle Swarm Optimization algorithm. Preliminary results show improved results.
引用
收藏
页码:370 / 375
页数:6
相关论文
共 27 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   PREDICTION OF PROTEIN CONFORMATION [J].
CHOU, PY ;
FASMAN, GD .
BIOCHEMISTRY, 1974, 13 (02) :222-245
[3]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[4]   The Jpred 3 secondary structure prediction server [J].
Cole, Christian ;
Barber, Jonathan D. ;
Barton, Geoffrey J. .
NUCLEIC ACIDS RESEARCH, 2008, 36 :W197-W201
[5]  
Cuff JA, 2000, PROTEINS, V40, P502, DOI 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO
[6]  
2-Q
[7]   Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training [J].
Dor, Ofer ;
Zhou, Yaoqi .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 66 (04) :838-845
[8]   ANALYSIS OF ACCURACY AND IMPLICATIONS OF SIMPLE METHODS FOR PREDICTING SECONDARY STRUCTURE OF GLOBULAR PROTEINS [J].
GARNIER, J ;
OSGUTHORPE, DJ ;
ROBSON, B .
JOURNAL OF MOLECULAR BIOLOGY, 1978, 120 (01) :97-120
[9]  
Garnier J, 1996, METHOD ENZYMOL, V266, P540
[10]   Extreme learning machine: Theory and applications [J].
Huang, Guang-Bin ;
Zhu, Qin-Yu ;
Siew, Chee-Kheong .
NEUROCOMPUTING, 2006, 70 (1-3) :489-501