Polynomial integrals for third- and fourth-order ordinary difference equations

被引:4
作者
Sahadevan, R. [1 ]
Maheswari, C. Uma [1 ]
机构
[1] Univ Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, India
关键词
D O I
10.2991/jnmp.2008.15.3.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A direct method to construct polynomial integrals for third order ordinary difference equation (O Delta E) w(n + 3) = F(w(n), w(n + 1), w( n + 2)) and fourth order O Delta E w(n + 4) = F(w(n), w(n + 1), w(n + 2), w(n + 3)) is presented. The effectiveness of the method to construct more than one polynomial integral for N-th order O Delta E is also briefly discussed.
引用
收藏
页码:299 / 315
页数:17
相关论文
共 25 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[2]  
ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
[3]  
[Anonymous], 2004, DISCRETE INTEGRABLE
[4]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[5]   Algebraic entropy [J].
Bellon, MP ;
Viallet, CM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 204 (02) :425-437
[6]   INTEGRABLE SYMPLECTIC MAPS [J].
BRUSCHI, M ;
RAGNISCO, O ;
SANTINI, PM ;
TU, GZ .
PHYSICA D, 1991, 49 (03) :273-294
[7]   Sufficient conditions for dynamical systems to have pre-symplectic or pre-implectic structures [J].
Byrnes, GB ;
Haggar, FA ;
Quispel, GRW .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 272 (1-2) :99-129
[8]   COMPLETE-INTEGRABILITY OF LAGRANGIAN MAPPINGS AND LATTICES OF KDV TYPE [J].
CAPEL, HW ;
NIJHOFF, FW ;
PAPAGEORGIOU, VG .
PHYSICS LETTERS A, 1991, 155 (6-7) :377-387
[9]   A new family of four-dimensional symplectic and integrable mappings [J].
Capel, HW ;
Sahadevan, R .
PHYSICA A, 2001, 289 (1-2) :86-106
[10]   DO INTEGRABLE MAPPINGS HAVE THE PAINLEVE PROPERTY [J].
GRAMMATICOS, B ;
RAMANI, A ;
PAPAGEORGIOU, V .
PHYSICAL REVIEW LETTERS, 1991, 67 (14) :1825-1828