Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride

被引:434
作者
Jin, Huanyu [1 ]
Wang, Xuesi [1 ]
Tang, Cheng [1 ]
Vasileff, Anthony [1 ]
Li, Laiquan [1 ]
Slattery, Ashley [2 ]
Qiao, Shi-Zhang [1 ]
机构
[1] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Adelaide Microscopy, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
electrocatalysis; hydrogen evolution; in situ Raman spectroscopy hydrazine oxidation; nickel surface nitride; seawater; HYDRAZINE OXIDATION; ENERGY; CATALYST; ELECTROCATALYSTS; GENERATION; NANOSHEETS; KINETICS;
D O I
10.1002/adma.202007508
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic production of hydrogen from seawater provides a route to low-cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni-SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm(-2) in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni-SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated Ni-N bonding on the surface is present. In situ Raman measurements show that the Ni-SN@C performs like Pt with the ability to generate hydronium ions in a high-pH electrolyte. The catalyst operation is then demonstrated in a two-electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm(-2).
引用
收藏
页数:8
相关论文
共 53 条
[1]   Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments [J].
Abghoui, Younes ;
Garden, Anna L. ;
Howat, Jakob G. ;
Vegge, Tejs ;
Skulason, Egill .
ACS CATALYSIS, 2016, 6 (02) :635-646
[2]   High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re2(N2)(N)2 stable at ambient conditions [J].
Bykov, Maxim ;
Chariton, Stella ;
Fei, Hongzhan ;
Fedotenko, Timofey ;
Aprilis, Georgios ;
Ponomareva, Alena, V ;
Tasnadi, Ferenc ;
Abrikosov, Igor A. ;
Merle, Benoit ;
Feldners, Patrick ;
Vogel, Sebastian ;
Schnick, Wolfgang ;
Prakapenka, Vitali B. ;
Greenberg, Eran ;
Hanfland, Michael ;
Pakhomova, Anna ;
Liermann, Hanns-Peter ;
Katsura, Tomoo ;
Dubrovinskaia, Natalia ;
Dubrovinsky, Leonid .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites [J].
Chen, Guangbo ;
Wang, Tao ;
Zhang, Jian ;
Liu, Pan ;
Sun, Hanjun ;
Zhuang, Xiaodong ;
Chen, Mingwei ;
Feng, Xinliang .
ADVANCED MATERIALS, 2018, 30 (10)
[4]   Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities [J].
Chen, JGG .
CHEMICAL REVIEWS, 1996, 96 (04) :1477-1498
[5]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[6]   INFRARED INTENSITIES OF H3O+, H2DO+, HD2O+, AND D3O+ [J].
COLVIN, ME ;
RAINE, GP ;
SCHAEFER, HF ;
DUPUIS, M .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (03) :1551-1552
[7]   Sustainable Hydrogen Production from Offshore Marine Renewable Farms: Techno-Energetic Insight on Seawater Electrolysis Technologies [J].
d'Amore-Domenech, Rafael ;
Leo, Teresa J. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (09) :8006-+
[8]   Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis [J].
Dionigi, Fabio ;
Reier, Tobias ;
Pawolek, Zarina ;
Gliech, Manuel ;
Strasser, Peter .
CHEMSUSCHEM, 2016, 9 (09) :962-972
[9]   Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds [J].
Dresp, Soeren ;
Ngo Thanh, Trung ;
Klingenhof, Malte ;
Brueckner, Sven ;
Hauke, Philipp ;
Strasser, Peter .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (06) :1725-1729
[10]   Computational high-throughput screening of electrocatalytic materials for hydrogen evolution [J].
Greeley, Jeff ;
Jaramillo, Thomas F. ;
Bonde, Jacob ;
Chorkendorff, I. B. ;
Norskov, Jens K. .
NATURE MATERIALS, 2006, 5 (11) :909-913