New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

被引:150
作者
Ludwig, W. [1 ,2 ]
King, A. [2 ,3 ]
Reischig, P. [2 ]
Herbig, M. [1 ]
Lauridsen, E. M. [4 ]
Schmidt, S. [4 ]
Proudhon, H. [5 ]
Forest, S. [5 ]
Cloetens, P. [2 ]
du Roscoat, S. Rolland [2 ]
Buffiere, J. Y. [1 ]
Marrow, T. J. [3 ]
Poulsen, H. F. [4 ]
机构
[1] Univ Lyon, Inst Natl Sci Appl Lyon, CNRS, MATEIS,UMR 5510, F-69621 Villeurbanne, France
[2] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[3] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
[4] Tech Univ Denmark, Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark
[5] MINES ParisTech, Ctr Mat, CNRS, UMR 7633, F-91003 Evry, France
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2009年 / 524卷 / 1-2期
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
3D grain mapping; Diffraction contrast tomography; Polycrystals; Holotomography; Topotomography; 3DXRD; SHORT FATIGUE-CRACK; INDIVIDUAL GRAINS; CONTRAST TOMOGRAPHY; BOUNDARIES; ALLOY; PENETRATION; MICROSCOPY; ALUMINUM; BEAM; MAPS;
D O I
10.1016/j.msea.2009.04.009
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific material systems. A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape, crystallographic orientation and local attenuation coefficient distribution. The technique applies to the larger range of plastically undeformed, polycrystalline mono-phase materials, provided some conditions on grain size and texture are fulfilled. The straightforward combination with high-resolution microtomography opens interesting new possibilities for the observation of microstructure related damage and deformation mechanisms in these materials. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 76
页数:8
相关论文
共 50 条
[21]   The imaging of failure in structural materials by synchrotron radiation X-ray microtomography [J].
Wu, S. C. ;
Xiao, T. Q. ;
Withers, P. J. .
ENGINEERING FRACTURE MECHANICS, 2017, 182 :127-156
[22]   New opportunities at the Materials Science Beamline at ESRF to exploit high energy nano-focus X-ray beams [J].
Wright, Jonathan ;
Giacobbe, Carlotta ;
Majkut, Marta .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2020, 24 (02)
[23]   Enhancing resolution in coherent x-ray diffraction imaging [J].
Noh, Do Young ;
Kim, Chan ;
Kim, Yoonhee ;
Song, Changyong .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (49)
[24]   X-Ray Luminescence and X-Ray Fluorescence Computed Tomography: New Molecular Imaging Modalities [J].
Ahmad, Moiz ;
Pratx, Guillem ;
Bazalova, Magdalena ;
Xing, Lei .
IEEE ACCESS, 2014, 2 :1051-1061
[25]   High-resolution 3D X-ray diffraction microscopy: 3D mapping of deformed metal microstructures [J].
Kutsal, Mustafacan ;
Poulsen, Henning Friis ;
Winther, Grethe ;
Sorensen, Henning Osholm ;
Detlefs, Carsten .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2022, 55 (05) :1125-1138
[26]   Microstructure Characterisation of Advanced Materials via 2D and 3D X-Ray Refraction Techniques [J].
Mueller, Bernd R. ;
Kupsch, Andreas ;
Laquai, Rene ;
Nellesen, Jens ;
Tillmann, Wolfgang ;
Kasperovich, Galina ;
Bruno, Giovanni .
THERMEC 2018: 10TH INTERNATIONAL CONFERENCE ON PROCESSING AND MANUFACTURING OF ADVANCED MATERIALS, 2018, 941 :2401-2406
[27]   Digital simulation for 3D reconstruction of coherent x-ray diffractive imaging [J].
Zhou Guang-Zhao ;
Wang Yu-Dan ;
Ren Yu-Qi ;
Chen Can ;
Ye Lin-Lin ;
Xiao Ti-Qiao .
ACTA PHYSICA SINICA, 2012, 61 (01)
[28]   3D diffractive imaging of nanoparticle ensembles using an x-ray laser [J].
Ayyer, Kartik ;
Xavier, P. Lourdu ;
Bielecki, Johan ;
Shen, Zhou ;
Daurer, Benedikt J. ;
Samanta, Amit K. ;
Awel, Salah ;
Bean, Richard ;
Barty, Anton ;
Bergemann, Martin ;
Ekeberg, Tomas ;
Estillore, Armando D. ;
Fangohr, Hans ;
Giewekemeyer, Klaus ;
Hunter, Mark S. ;
Karnevskiy, Mikhail ;
Kirian, Richard A. ;
Kirkwood, Henry ;
Kim, Yoonhee ;
Koliyadu, Jayanath ;
Lange, Holger ;
Letrun, Romain ;
Lubke, Jannik ;
Michelat, Thomas ;
Morgan, Andrew J. ;
Roth, Nils ;
Sato, Tokushi ;
Sikorski, Margin ;
Schulz, Florian ;
Spence, John C. H. ;
Vagovic, Patrik ;
Wollweber, Tamme ;
Worbs, Lena ;
Yefanov, Oleksandr ;
Zhuang, Yulong ;
Maia, Filipe R. N. C. ;
Horke, Daniel A. ;
Kuepper, Jochen ;
Loh, N. Duane ;
Mancuso, Adrian P. ;
Chapman, Henry N. .
OPTICA, 2021, 8 (01) :15-23
[29]   Development of 3D Deformation Analysis Method in Polycrystalline Metal by Combining Synchrotron Radiation Tomography with X-Ray Diffraction [J].
Kobayashi, Masakazu ;
Ohkawa, Yoshikazu ;
Toda, Hiroyuki ;
Uesugi, Kentaro ;
Suzuki, Yoshio ;
Takeuchi, Akihisa .
JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, 2013, 77 (09) :375-384
[30]   Advances in X-ray diffraction contrast tomography: flexibility in the setup geometry and application to multiphase materials [J].
Reischig, Peter ;
King, Andrew ;
Nervo, Laura ;
Vigano, Nicola ;
Guilhem, Yoann ;
Palenstijn, Willem Jan ;
Batenburg, K. Joost ;
Preuss, Michael ;
Ludwig, Wolfgang .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2013, 46 :297-311