Stable spatiotemporal dissipative soliton clusters in the complex Ginzburg-Landau equation

被引:2
|
作者
Zhu, Wei-Ling [2 ]
Luo, Li [3 ]
Yan, Jun-Hu [1 ]
He, Ying-Ji [1 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Elect & Informat, Guangzhou 510665, Guangdong, Peoples R China
[2] Maoming Univ, Sch Sci, Maoming 525000, Guangdong, Peoples R China
[3] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Guangdong, Peoples R China
关键词
Ginzburg-Landau equation; solitons cluster; spatiotemporal soliton; VORTEX;
D O I
10.1080/09500340903359970
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Stable spatiotemporal soliton clusters in the cubic-quintic complex Ginzburg-Landau equation are investigated theoretically. It is revealed that spatiotemporal soliton clusters carrying zero and nonzero topological charges can stably propagate and the clusters don't substantially rotate despite the value of topological charges due to the effect of friction force in such a model. It is found that if the separation of solitons is larger than a critical value, the cluster is maintained, otherwise solitons exhibit too strong an attraction for each other due to being in-phase, which leads to their instability. Prediction of the minimum separation of solitons for bound clusters is demonstrated by use of energy and momentum balance methods.
引用
收藏
页码:1824 / 1828
页数:5
相关论文
共 50 条
  • [1] Soliton turbulence in the complex Ginzburg-Landau equation
    Sakaguchi, Hidetsugu
    PHYSICAL REVIEW E, 2007, 76 (01):
  • [2] Soliton Solutions of the Complex Ginzburg-Landau Equation
    Rasheed, Faisal Salah Yousif
    Aziz, Zainal Abdul
    MATEMATIKA, 2009, 25 (01) : 39 - 51
  • [3] Ginzburg-Landau spatiotemporal dissipative optical solitons
    Mihalache, D.
    Mazilu, D.
    ROMANIAN REPORTS IN PHYSICS, 2008, 60 (03) : 749 - 761
  • [4] Dissipative Localised Structures for the Complex Discrete Ginzburg-Landau Equation
    Hennig, Dirk
    Karachalios, Nikos I.
    Cuevas-Maraver, Jesus
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (03)
  • [5] Replication of dissipative vortices modeled by the complex Ginzburg-Landau equation
    Kochetov, Bogdan A.
    Tuz, Vladimir R.
    PHYSICAL REVIEW E, 2018, 98 (06)
  • [6] Dissipative solitons for generalizations of the cubic complex Ginzburg-Landau equation
    Carvalho, M., I
    Facao, M.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [7] Dark soliton dynamics under the complex Ginzburg-Landau equation
    Horikis, Theodoros P.
    CHAOS SOLITONS & FRACTALS, 2015, 77 : 94 - 100
  • [8] Soliton solutions and Backlund transformation for the complex Ginzburg-Landau equation
    Liu, Wen-Jun
    Tian, Bo
    Jiang, Yan
    Sun, Kun
    Wang, Pan
    Li, Min
    Qu, Qi-Xing
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4369 - 4376
  • [9] On the stable hole solutions in the complex Ginzburg-Landau equation
    Descalzi, O
    Düring, G
    Tirapegui, E
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (01) : 66 - 71
  • [10] Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation
    Ballard, Christopher C.
    Esty, C. Clark
    Egolf, David A.
    CHAOS, 2016, 26 (11)