Ensemble Methods for Solar Power Forecasting

被引:1
作者
Chen, Zezhou [1 ]
Koprinska, Irena [1 ]
机构
[1] Univ Sydney, Sch Comp Sci, Sydney, NSW, Australia
来源
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2020年
关键词
solar power forecasting; ensembles of prediction models; dynamic ensembles; time series forecasting; PREDICTION;
D O I
10.1109/ijcnn48605.2020.9206713
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the task of predicting the solar power generated by a photovoltaic system, one-step ahead, from previous half-hourly photovoltaic power data. We propose a range of strategies for constructing static and dynamic heterogeneous ensembles and conduct an extensive evaluation using data for two years from two Australian solar power plants. We analyse the performance of the proposed static and dynamic ensembles and compare them with classical ensemble methods (bagging, boosting and random forest) and a baseline, showing an improved performance. The best result was achieved by the dynamic ensembles DEPast and DEPast+Future, in conjunction with the Peer Check algorithm for selecting base learners for inclusion in the dynamic ensembles.
引用
收藏
页数:8
相关论文
共 21 条
  • [1] Online short-term solar power forecasting
    Bacher, Peder
    Madsen, Henrik
    Nielsen, Henrik Aalborg
    [J]. SOLAR ENERGY, 2009, 83 (10) : 1772 - 1783
  • [2] Cerqueira V., 2017, P EUR C MACH LEARN P
  • [3] Online 24-h solar power forecasting based on weather type classification using artificial neural network
    Chen, Changsong
    Duan, Shanxu
    Cai, Tao
    Liu, Bangyin
    [J]. SOLAR ENERGY, 2011, 85 (11) : 2856 - 2870
  • [4] Short-term prediction of photovoltaic energy generation by intelligent approach
    Chow, Stanley K. H.
    Lee, Eric W. M.
    Li, Danny H. W.
    [J]. ENERGY AND BUILDINGS, 2012, 55 : 660 - 667
  • [5] Short-term reforecasting of power output from a 48 MWe solar PV plant
    Chu, Yinghao
    Urquhart, Bryan
    Gohari, Seyyed M. I.
    Pedro, Hugo T. C.
    Kleissl, Jan
    Coimbra, Carlos F. M.
    [J]. SOLAR ENERGY, 2015, 112 : 68 - 77
  • [6] Simple robust averages of forecasts: Some empirical results
    Jose, Victor Richmond R.
    Winkler, Robert L.
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2008, 24 (01) : 163 - 169
  • [7] Dynamic Ensemble Using Previous and Predicted Future Performance for Multi-step-ahead Solar Power Forecasting
    Koprinska, Irena
    Rana, Mashud
    Rahman, Ashfaqur
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 436 - 449
  • [8] Koprinska I, 2018, IEEE IJCNN
  • [9] Analysis of daily solar power prediction with data-driven approaches
    Long, Huan
    Zhang, Zijun
    Su, Yan
    [J]. APPLIED ENERGY, 2014, 126 : 29 - 37
  • [10] Oliveira M.R., 2014, ENSEMBLES TIME SERIE