The effect of time ordering and concurrency in a mathematical model of chemoradiotherapy

被引:9
作者
Bashkirtseva, Irina [1 ]
Ryashko, Lev [1 ]
Lopez, Alvaro G. [2 ]
Seoane, Jesus M. [2 ]
Sanjuan, Miguel A. F. [2 ,3 ]
机构
[1] Ural Fed Univ, Inst Math & Comp Sci, Lenina 51, Ekaterinburg 620000, Russia
[2] Univ Rey Juan Carlos, Dept Fis, Nonlinear Dynam Chaos & Complex Syst Grp, Tulipan S-N, Madrid 28933, Spain
[3] Kaunas Univ Technol, Dept Appl Informat, Studentu 50-415, LT-51368 Kaunas, Lithuania
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2021年 / 96卷
关键词
Nonlinear dynamics; Mathematical modelling; Bistability; Tumor growth; Chemoradiotherapy; CELL LUNG-CANCER; LOW-GRADE GLIOMAS; CHEMOTHERAPY; TUMOR; CHEMORADIATION; RADIOTHERAPY; DYNAMICS; THERAPY;
D O I
10.1016/j.cnsns.2021.105693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the effect of switching the order of administration of cytotoxic drugs and radiation in cancer therapy by comparing a sequential and a concurrent protocol of chemoradiation. For this purpose, we derive a nonlinear ordinary differential equation model based on well-accepted knowledge of chemotherapy and radiotherapy for in vitro solid tumors. Using the bifurcation theory, we demonstrate that the administration of radiotherapy concurrently, once the chemotherapeutic regime has caused a considerable reduction of the tumor burden, might be more pertinent than the reverse strategy in those circumstances where bistability occurs. Consequently, our analysis suggests that an adequate time order and concurrency may have potential benefits in chemoradiation of solid tumors. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 36 条
[1]  
Adam J.A., 1997, A Survey of Models for Tumor-Immune System Dynamics
[2]   The effect of time ordering and concurrency in a mathematical model of chemoradiotherapy [J].
Bashkirtseva, Irina ;
Ryashko, Lev ;
Lopez, Alvaro G. ;
Seoane, Jesus M. ;
Sanjuan, Miguel A. F. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
[3]   On the foundations of cancer modelling: Selected topics, speculations, and perspectives [J].
Bellomo, N. ;
Li, N. K. ;
Maini, P. K. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (04) :593-646
[4]   Sequential vs Concurrent Chemoradiation for Stage III Non-Small Cell Lung Cancer: Randomized Phase III Trial RTOG 9410 [J].
Curran, Walter J., Jr. ;
Paulus, Rebecca ;
Langer, Corey J. ;
Komaki, Ritsuko ;
Lee, Jin S. ;
Hauser, Stephen ;
Movsas, Benjamin ;
Wasserman, Todd ;
Rosenthal, Seth A. ;
Gore, Elizabeth ;
Machtay, Mitchell ;
Sause, William ;
Cox, James D. .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2011, 103 (19) :1452-1460
[5]   The dynamics of an optimally controlled tumor model: A case study [J].
De Pillis, LG ;
Radunskaya, A .
MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (11) :1221-1244
[6]  
El Sharouni SY, 2009, ANTICANCER RES, V29, P5219
[7]   Optimal radiation fractionation for low-grade gliomas: Insights from a mathematical model [J].
Galochkina, Tatiana ;
Bratus, Alexander ;
Perez-Garcia, Victor M. .
MATHEMATICAL BIOSCIENCES, 2015, 267 :1-9
[8]  
Gardner SN, 2000, CANCER RES, V60, P1417
[9]   Modeling multi-drug chemotherapy: Tailoring treatment to individuals [J].
Gardner, SN .
JOURNAL OF THEORETICAL BIOLOGY, 2002, 214 (02) :181-207
[10]   Prediction of Treatment Response for Combined Chemo- and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a Bio-Mathematical Model [J].
Geng, Changran ;
Paganetti, Harald ;
Grassberger, Clemens .
SCIENTIFIC REPORTS, 2017, 7