3D deep learning based classification of pulmonary ground glass opacity nodules with automatic segmentation

被引:18
作者
Wang, Duo [1 ,2 ]
Zhang, Tao [1 ,3 ]
Li, Ming [4 ]
Bueno, Raphael [5 ,6 ]
Jayender, Jagadeesan [2 ,6 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
[3] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[4] Fudan Univ, Huadong Hosp, Dept Radiol, Shanghai 200040, Peoples R China
[5] Brigham & Womens Hosp, Dept Thorac Surg, 75 Francis St, Boston, MA 02115 USA
[6] Harvard Med Sch, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Pulmonary ground glass opacity nodules; Classification; Automatic segmentation; Joint training; Deep learning;
D O I
10.1016/j.compmedimag.2020.101814
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Classifying ground-glass lung nodules (GGNs) into atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC) on diagnostic CT images is important to evaluate the therapy options for lung cancer patients. In this paper, we propose a joint deep learning model where the segmentation can better facilitate the classification of pulmonary GGNs. Based on our observation that masking the nodule to train the model results in better lesion classification, we propose to build a cascade architecture with both segmentation and classification networks. The segmentation model works as a trainable preprocessing module to provide the classification-guided 'attention' weight map to the raw CT data to achieve better diagnosis performance. We evaluate our proposed model and compare with other baseline models for 4 clinically significant nodule classification tasks, defined by a combination of pathology types, using 4 classification metrics: Accuracy, Average F1 Score, Matthews Correlation Coefficient (MCC), and Area Under the Receiver Operating Characteristic Curve (AUC). Experimental results show that the proposed method outperforms other baseline models on all the diagnostic classification tasks.
引用
收藏
页数:9
相关论文
共 35 条
  • [1] Borezuk AC, 2009, AM J SURG PATHOL, V33, P462, DOI 10.1097/PAS.0b013e318190157c
  • [2] DCAN: Deep Contour-Aware Networks for Accurate Gland Segmentation
    Chen, Hao
    Qi, Xiaojuan
    Yu, Lequan
    Heng, Pheng-Ann
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2487 - 2496
  • [3] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [4] 3D Slicer as an image computing platform for the Quantitative Imaging Network
    Fedorov, Andriy
    Beichel, Reinhard
    Kalpathy-Cramer, Jayashree
    Finet, Julien
    Fillion-Robin, Jean-Christophe
    Pujol, Sonia
    Bauer, Christian
    Jennings, Dominique
    Fennessy, Fiona
    Sonka, Milan
    Buatti, John
    Aylward, Stephen
    Miller, James V.
    Pieper, Steve
    Kikinis, Ron
    [J]. MAGNETIC RESONANCE IMAGING, 2012, 30 (09) : 1323 - 1341
  • [5] Computer-aided diagnosis of ground-glass opacity pulmonary nodules using radiomic features analysis
    Gong, Jing
    Liu, Jiyu
    Hao, Wen
    Nie, Shengdong
    Wang, Shengping
    Peng, Weijun
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (13)
  • [6] He K, 2016, European conference on computer vision, P630, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38, DOI 10.1109/CVPR.2016.90]
  • [7] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [8] Huang G, 2017, P IEEE C COMP VIS PA, P4700, DOI [DOI 10.1109/CVPR.2017.243, 10.1109/CVPR.2017.243]
  • [9] Multiple Resolution Residually Connected Feature Streams for Automatic Lung Tumor Segmentation From CT Images
    Jiang, Jue
    Hu, Yu-Chi
    Liu, Chia-Ju
    Halpenny, Darragh
    Hellmann, Matthew D.
    Deasy, Joseph O.
    Mageras, Gig
    Veeraraghavan, Harini
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (01) : 134 - 144
  • [10] Kingma DP, 2015, C TRACK P