Regulator dependence of inhomogeneous phases in the (2+1)-dimensional Gross-Neveu model

被引:18
作者
Buballa, Michael [1 ,3 ]
Kurth, Lennart [1 ]
Wagner, Marc [2 ,3 ]
Winstel, Marc [2 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, Dept Phys, Theoriezentrum, Schlossgartenstr 2, D-64289 Darmstadt, Germany
[2] Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany
[3] Helmholtz Res Acad Hesse FAIR, Campus Riedberg,Max von Laue Str 12, D-60438 Frankfurt, Germany
关键词
D O I
10.1103/PhysRevD.103.034503
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The phase diagram of the Gross-Neveu model in 2 + 1 space-time dimensions at nonzero temperature and chemical potential is studied in the limit of infinitely many flavors, focusing on the possible existence of inhomogeneous phases, where the order parameter sigma is nonuniform in space. To this end, we analyze the stability of the energetically favored homogeneous configuration sigma(x) = (sigma) over bar = const with respect to small inhomogeneous fluctuations, employing lattice field theory with two different lattice discretizations as well as a continuum approach with Pauli-Villars regularization. Within lattice field theory, we also perform a full minimization of the effective action, allowing for arbitrary 1-dimensional modulations of the order parameter. For all methods special attention is paid to the role of cutoff effects. For one of the two lattice discretizations, no inhomogeneous phase was found. For the other lattice discretization and within the continuum approach with a finite Pauli-Villars cutoff parameter., we find a region in the phase diagram where an inhomogeneous order parameter is favored. This inhomogeneous region shrinks, however, when the lattice spacing is decreased or Lambda is increased, and finally disappears for all nonzero temperatures when the cutoff is removed completely. For vanishing temperature, we find hints for a degeneracy of homogeneous and inhomogeneous solutions, in agreement with earlier findings.
引用
收藏
页数:24
相关论文
共 44 条
[1]   Crystalline chiral condensates off the tricritical point in a generalized Ginzburg-Landau approach [J].
Abuki, Hiroaki ;
Ishibashi, Daisuke ;
Suzuki, Katsuhiko .
PHYSICAL REVIEW D, 2012, 85 (07)
[2]  
[Anonymous], GNU Scientific Library Reference Manual
[3]  
[Anonymous], 2012, World Sci. Lect. Notes Phys
[4]   SPONTANEOUS CHIRAL-SYMMETRY BREAKING IN 3-DIMENSIONAL QED [J].
APPELQUIST, TW ;
BOWICK, M ;
KARABALI, D ;
WIJEWARDHANA, LCR .
PHYSICAL REVIEW D, 1986, 33 (12) :3704-3713
[5]  
ASAKAWA M, 1989, NUCL PHYS A, V504, P668
[6]   Inhomogeneous condensates in the thermodynamics of the chiral NJL2 model [J].
Basar, Goekce ;
Dunne, Gerald V. ;
Thies, Michael .
PHYSICAL REVIEW D, 2009, 79 (10)
[7]   Chiral crossover in QCD at zero and non-zero chemical potentials HotQCD Collaboration [J].
Bazavov, A. ;
Ding, H-T ;
Hegde, R. ;
Kaczmarek, O. ;
Karsch, F. ;
Karthik, N. ;
Laermann, E. ;
Lahiri, Anirban ;
Larsen, R. ;
Li, S-T ;
Mukherjee, Swagato ;
Ohno, H. ;
Petreczky, R. ;
Sandmeyer, H. ;
Schmidt, C. ;
Sharma, S. ;
Steinbrecher, R. .
PHYSICS LETTERS B, 2019, 795 :15-21
[8]   Chiral and deconfinement aspects of the QCD transition [J].
Bazavov, A. ;
Bhattacharya, T. ;
Cheng, M. ;
DeTar, C. ;
Ding, H-T. ;
Gottlieb, Steven ;
Gupta, R. ;
Hegde, P. ;
Heller, U. M. ;
Karsch, F. ;
Laermann, E. ;
Levkova, L. ;
Mukherjee, S. ;
Petreczky, P. ;
Schmidt, C. ;
Soltz, R. A. ;
Soeldner, W. ;
Sugar, R. ;
Toussaint, D. ;
Unger, W. ;
Vranas, P. .
PHYSICAL REVIEW D, 2012, 85 (05)
[9]   The QCD phase diagram from analytic continuation [J].
Bellwied, R. ;
Borsanyi, S. ;
Fodor, Z. ;
Guenther, J. ;
Katz, S. D. ;
Ratti, C. ;
Szabo, K. K. .
PHYSICS LETTERS B, 2015, 751 :559-564
[10]   Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III [J].
Borsanyi, Szabolcs ;
Fodor, Zoltan ;
Hoelbling, Christian ;
Katz, Sandor D. ;
Krieg, Stefan ;
Ratti, Claudia ;
Szabo, Kalman K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (09)