On critical properties of the Berry curvature in the Kitaev honeycomb model

被引:7
作者
Bascone, Francesco [1 ,2 ]
Leonforte, Luca [3 ]
Valent, Davide [3 ,4 ]
Spagnolo, Bernardo [3 ,5 ,6 ]
Carollo, Angelo [3 ,5 ]
机构
[1] Univ Napoli Federico II, Dipartimento Fis E Pancini, Complesso Univ Monte S Angelo Edificio 6, I-80126 Naples, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo Edificio 6, I-80126 Naples, Italy
[3] Univ Palermo, Dipartimento Fis & Chim Emilio Segre, Grp Interdisciplinary Theoret Phys, Viale Sci,Edificio 18, I-90128 Palermo, Italy
[4] CNR IRIB, Via Ugo La Malfa 153, I-90146 Palermo, Italy
[5] Natl Res Lobachevsky State Univ Nizhni Novgorod, Radiophys Dept, 23 Gagarin Ave, Nizhnii Novgorod 603950, Russia
[6] Ist Nazl Fis Nucl, Sez Catania, Via S Sofia 64, I-95123 Catania, Italy
关键词
quantum phase transitions; topological phases of matter; anyons and fractional statistical models;
D O I
10.1088/1742-5468/ab35e9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We analyse the Kitaev honeycomb model, by means of the Berry curvature with respect to Hamiltonian parameters. We concentrate on the ground-state vortex-free sector, which allows us to exploit an appropriate Fermionisation technique. The parameter space includes a time-reversal breaking term which provides an analytical headway to study the curvature in phases in which it would otherwise vanish. The curvature is then analysed in the limit in which the time-reversal-symmetry-breaking perturbation vanishes. This provides remarkable information about the topological phase transitions of the model. The Berry curvature in itself exhibits no singularities at criticality, nevertheless it distinguishes different phases by showing different behaviours. In particular, the analysis of the first derivative shows a critical behaviour around the transition point.
引用
收藏
页数:15
相关论文
共 42 条
[1]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[2]   FRACTIONAL STATISTICS AND THE QUANTUM HALL-EFFECT [J].
AROVAS, D ;
SCHRIEFFER, JR ;
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1984, 53 (07) :722-723
[3]   Quantum response of dephasing open systems [J].
Avron, J. E. ;
Fraas, M. ;
Graf, G. M. ;
Kenneth, O. .
NEW JOURNAL OF PHYSICS, 2011, 13
[4]   Topology by dissipation [J].
Bardyn, C-E ;
Baranov, M. A. ;
Kraus, C. V. ;
Rico, E. ;
Imamoglu, A. ;
Zoller, P. ;
Diehl, S. .
NEW JOURNAL OF PHYSICS, 2013, 15
[5]   Probing the Topology of Density Matrices [J].
Bardyn, Charles-Edouard ;
Wawer, Lukas ;
Altland, Alexander ;
Fleischhauer, Michael ;
Diehl, Sebastian .
PHYSICAL REVIEW X, 2018, 8 (01)
[6]   Finite-temperature geometric properties of the Kitaev honeycomb model [J].
Bascone, Francesco ;
Leonforte, Luca ;
Valenti, Davide ;
Spagnolo, Bernardo ;
Carollo, Angelo .
PHYSICAL REVIEW B, 2019, 99 (20)
[7]   Topology of density matrices [J].
Budich, Jan Carl ;
Diehl, Sebastian .
PHYSICAL REVIEW B, 2015, 91 (16)
[8]  
Campos I, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.019702
[9]   Geometric phases and criticality in spin-chain systems [J].
Carollo, ACM ;
Pachos, JK .
PHYSICAL REVIEW LETTERS, 2005, 95 (15)
[10]   Symmetric Logarithmic Derivative of Fermionic Gaussian States [J].
Carollo, Angelo ;
Spagnolo, Bernardo ;
Valenti, Davide .
ENTROPY, 2018, 20 (07)