Parameter identification in synthetic biological circuits using multi-objective optimization

被引:3
作者
Boada, Y. [1 ]
Vignoni, A. [2 ,3 ]
Reynoso-Meza, G. [4 ]
Pico, J. [1 ]
机构
[1] Univ Politecn Valencia, IU Automat & Informat Ind Ai2, Camino Vera S-N, E-46022 Valencia, Spain
[2] Ctr Syst Biol Dresden, Pfotenhauer Str 108, D-01307 Dresden, Germany
[3] Max Planck Inst Mol Cell Biol & Genet, Pfotenhauer Str 108, D-01307 Dresden, Germany
[4] Pontificia Univ Catolica Parana, Ind & Syst Engn Grad Program PPGEPS, Imaculada Conceicao 1155, BR-80215901 Curitiba, Parana, Brazil
关键词
Biological circuits; Kinetic parameters; Parameter identification; Multi-objective; optimization; MASS-ACTION KINETICS; BIOCHEMICAL PATHWAYS; DYNAMIC-MODELS; ADAPTATION; NETWORKS; SYSTEMS;
D O I
10.1016/j.ifacol.2016.12.106
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Synthetic biology exploits the of mathematical modeling of synthetic circuits both to predict the behavior of the designed synthetic devices, and to help on the selection of their biological coin portents. The increasing complexity of the circuits being designed requires performing approximations and model reductions to get handy models. Parameter estimation in these models remains a challenging problem that has usually been addressed by optimizing the weighted combination of different prediction errors to obtain a single solution. The single-objective approach is inadequate to incorporate different kinds of experiments, and to identify parameters for an ensemble of biological circuit models. We present a methodology based on multi-objective optimization to perform parameter estimation that can fully harness to ensembles of local models for biological circuits. The methodology uses a global multi-objective evolutionary algorithm and a multi-criteria decision making strategy to select the most suitable solutions. Our approach finds an approximation to the Pareto optimal set of model parameters that correspond to each experimental scenario. Then, the Pareto set was clustered according to the experimental scenarios. This, in turn, allows to analyze the sensitivity of model parameters for different scenarios. Finally, we show the methodology applicability through the case study of a genetic incoherent feed-forward circuit, under different concentrations of the inducer input signal. (C) 2016 IFAC (International Federation Of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:77 / 82
页数:6
相关论文
共 31 条
[1]  
Alon Uri, 2006, An Introduction to Systems Biology: Design Principles of Biological Circuits
[2]   Parameter estimation and determinability analysis applied to Drosophila gap gene circuits [J].
Ashyraliyev, Maksat ;
Jaeger, Johannes ;
Blom, Joke G. .
BMC SYSTEMS BIOLOGY, 2008, 2
[3]  
Basu S., 2004, P NATL ACAD SCI USA, V106, P8477
[4]  
Biobrick Foundation, 2006, PART REG
[5]   A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization [J].
Blasco, X. ;
Herrero, J. M. ;
Sanchis, J. ;
Martinez, M. .
INFORMATION SCIENCES, 2008, 178 (20) :3908-3924
[6]   Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case [J].
Boada, Yadira ;
Reynoso-Meza, Gilberto ;
Pico, Jesus ;
Vignoni, Alejandro .
BMC SYSTEMS BIOLOGY, 2016, 10
[7]   Nonlinear protein degradation and the function of genetic circuits [J].
Buchler, NE ;
Gerland, U ;
Hwa, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (27) :9559-9564
[8]   Modeling and Analysis of Mass-Action Kinetics NONNEGATIVITY, REALIZABILITY, REDUCIBILITY, AND SEMISTABILITY [J].
Chellaboina, Vijaysekhar ;
Bhat, Sanjay P. ;
Haddad, Wassim M. ;
Bernstein, Dennis S. .
IEEE CONTROL SYSTEMS MAGAZINE, 2009, 29 (04) :60-78
[9]   Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters [J].
Chiang, Austin W. T. ;
Liu, Wei-Chung ;
Charusanti, Pep ;
Hwang, Ming-Jing .
BMC SYSTEMS BIOLOGY, 2014, 8
[10]   Conversion of the Vibrio fischeri transcriptional activator, LuxR, to a repressor [J].
Egland, KA ;
Greenberg, EP .
JOURNAL OF BACTERIOLOGY, 2000, 182 (03) :805-811