Existence and Uniqueness of Constant Mean Curvature Foliation of Asymptotically Hyperbolic 3-Manifolds

被引:16
作者
Neves, Andre [1 ]
Tian, Gang [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Foliations; constant mean curvature; SCALAR CURVATURE; MANIFOLDS; MASS; SOBOLEV;
D O I
10.1007/s00039-009-0019-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence and uniqueness of foliations by stable spheres with constant mean curvature for 3-manifolds which are asymptotic to anti-de Sitter-Schwarzschild metrics with positive mass. These metrics arise naturally as spacelike timeslices for solutions of the Einstein equation with a negative cosmological constant.
引用
收藏
页码:910 / 942
页数:33
相关论文
共 18 条
[2]  
Chang S. - Y. A., 1996, IAS PARK CITY MATH S, V2, P65
[3]  
Chang S.Y.A., 2004, Zurich Lectures in Advanced Mathematics
[4]   A PERTURBATION RESULT IN PRESCRIBING SCALAR CURVATURE ON SN [J].
CHANG, SYA ;
YANG, PC .
DUKE MATHEMATICAL JOURNAL, 1991, 64 (01) :27-69
[5]  
CHRISTODOULOU D., 1988, Contemporary Mathematics, V71, P9, DOI [10.1090/conm/071/954405, DOI 10.1090/CONM/071/954405]
[6]   The mass of asymptotically hyperbolic Riemannian manifolds [J].
Chrusciel, PT ;
Herzlich, M .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 212 (02) :231-264
[7]  
Colding TobiasH., 1999, COURANT LECT NOTES M
[8]   SOBOLEV AND ISOPERIMETRIC INEQUALITIES FOR RIEMANNIAN SUBMANIFOLDS [J].
HOFFMAN, D ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (06) :715-727
[9]   The inverse mean curvature flow and the Riemannian Penrose Inequality [J].
Huisken, G ;
Ilmanen, T .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 59 (03) :353-437
[10]   Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature [J].
Huisken, G ;
Yau, ST .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :281-311