Demonstration of a W-Band Traveling-Wave Tube Power Amplifier With 10-GHz Bandwidth

被引:22
作者
Cook, Alan M. [1 ]
Wright, Edward L. [2 ]
Nguyen, Khanh T. [2 ]
Joye, Colin D. [1 ]
Rodgers, John C. [1 ]
Jaynes, Reginald L. [1 ]
Chernyavskiy, Igor A. [1 ]
Wood, Frank N. [1 ]
Albright, Benjamin S., Jr. [1 ]
Abe, David K. [3 ]
Calame, Jeffrey P. [1 ]
Levush, Baruch [1 ]
Pershing, Dean E. [2 ]
Atkinson, John [4 ]
Kimura, Takuji [4 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
[2] Beam Wave Res Inc, Bethesda, MD 20814 USA
[3] DARPA, Arlington, VA 22203 USA
[4] CPI LLC, Palo Alto, CA 94304 USA
关键词
Millimeter-wave devices; millimeter-wave technology; power amplifiers; traveling-wave tubes (TWTs); DEVICES; DESIGN;
D O I
10.1109/TED.2021.3068926
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present the experimental demonstration of a traveling-wave tube (TWT) power amplifier operating in the W -band (75-110 GHz) frequency range. The device is based on a serpentine waveguide (SWG) amplification circuit, a slow wave circuit type capable of high power and broad instantaneous bandwidth in the upper millimeter-wave range. A 20 kV, 140-mA round solenoid-focused electron beam powers the device. At 20 kV, we measure 215 +/- 2 W peak RF output power at 93 GHz with 20.1 +/- 0.15 dB saturated gain, pulsed at 0.1% duty. We observe 10-GHz instantaneous amplification bandwidth at 100-W minimum output power, covering the range 88-98 GHz. Operating at 20.8 kV, the TWT produces 285 +/- 3 W at 91 GHz with 22.4 +/- 0.15 dB gain, and 7 GHz, 3-dB bandwidth. The peak electronic efficiency measured is approximately 10%.
引用
收藏
页码:2492 / 2498
页数:7
相关论文
共 23 条
[1]  
[Anonymous], 2020, ANSYS HFSS RELEASE 2
[2]   Vacuum Electronic High Power Terahertz Sources [J].
Booske, John H. ;
Dobbs, Richard J. ;
Joye, Colin D. ;
Kory, Carol L. ;
Neil, George R. ;
Park, Gun-Sik ;
Park, Jaehun ;
Temkin, Richard J. .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2011, 1 (01) :54-75
[3]   Modeling Vacuum Electronic Devices Using Generalized Impedance Matrices [J].
Chernyavskiy, Igor A. ;
Antonsen, Thomas M., Jr. ;
Rodgers, John C. ;
vlasov, Alexander N. ;
Chernin, David ;
Levush, Baruch .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (02) :536-542
[4]   Latest Advancements in High-Power Millimeter-Wave Helix TWTs [J].
Chong, Chae K. ;
Menninger, William L. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (06) :1227-1238
[5]   W-band TWT Component Fabrication and Testing [J].
Cook, Alan M. ;
Wright, Edward L. ;
Nguyen, Khanh T. ;
Joye, Colin D. ;
Wood, Frank. N. ;
Albright, B. Spence, Jr. ;
Lowe, John R. ;
Jaynes, Reginald L. ;
Calame, Jeffrey P. ;
Abe, David K. ;
Kimura, Takuji ;
Aymar, Galen .
2019 INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2019,
[6]   W-Band and D-Band Traveling-Wave Tube Circuits Fabricated by 3D Printing [J].
Cook, Alan M. ;
Joye, Colin D. ;
Calame, Jeffrey P. .
IEEE ACCESS, 2019, 7 :72561-72566
[7]  
Cook AM, 2018, IEEE INT VAC ELECT C, P331, DOI 10.1109/IVEC.2018.8391511
[8]  
Cooke S. J., 2012, 2012 IEEE Thirteenth International Vacuum Electronics Conference and the ninth International Vacuum Electron Sources Conference (IVEC-IVESC 2012), P21, DOI 10.1109/IVEC.2012.6262057
[9]  
Dohler G., 1987, 1987 International Electron Devices Meeting, IEDM. Technical Digeset (Cat. No.87CH2515-5), P485, DOI 10.1109/IEDM.1987.191465
[10]  
Dohler G., 1993, P VACUUM ELECTRON AN